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Abstract 

Geographic Information Systems (GIS) have been 
extensively used in various application domains, ranging 
from economical, ecological and demographic analysis, 
to city and route planning. Nowadays, organizations need 
sophisticated GIS-based Decision Support System (DSS) 
to analyze their data with respect to geographic 
information, represented not only as attribute data, but 
also in maps. Thus, vendors are increasingly integrating 
their products, leading to the concept of SOLAP (Spatial 
OLAP). Also, in the last years, and motivated by the 
explosive growth in the use of PDA devices, the field of 
moving object data has been receiving attention from the 
GIS community. However, not much has been done in 
providing moving object databases with OLAP 
functionality. In the first part of this paper we survey the 
SOLAP literature. We then move to Spatio-Temporal 
OLAP, in particular addressing the problem of trajectory 
analysis. We finally provide an in-depth comparative 
analysis between two proposals introduced in the context 
of  the GeoPKDD EU project: the Hermes-MDC system, 
and Piet, a proposal for SOLAP and moving objects,  
developed at the University of Buenos Aires, Argentina. 

Keywords: GIS, OLAP, Data Warehousing, Moving 
Objects, Trajectories, Aggregation 
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INTRODUCTION 

 
Geographic Information Systems (GIS) have been extensively used in 
various application domains, ranging from economical, ecological and 
demographic analysis, to city and route planning (Rigaux, Scholl, & 
Voisard, 2001; Worboys, 1995). Spatial information in a GIS is 
typically stored in different so-called thematic layers (also called 
themes). Information in themes can be stored in data structures 
according to different data models, the most usual ones being the raster 
model and the vector model. In a thematic layer, spatial data is 
annotated with classical relational attribute information, of (in general) 
numeric or string type. While spatial data is stored in data structures 
suitable for these kinds of data, associated attributes are usually stored 
in conventional relational databases. Spatial data in the different 
thematic layers of a GIS system can be mapped univocally to each 
other using a common frame of reference, like a coordinate system. 
These layers can be overlapped or overlayed to obtain an integrated 
spatial view. 
On the other hand, OLAP (On Line Analytical Processing)  (Kimball, 
1996; Kimball & Ross, 2002) comprises a set of tools and algorithms 
that allow efficiently querying multidimensional databases, containing 
large amounts of data, usually called Data Warehouses. In OLAP, data 
is organized as a set of dimensions and fact tables. In the 
multidimensional model, data can be perceived as a data cube, where 
each cell contains a measure or set of (probably aggregated) measures 
of interest. As we discuss later, OLAP dimensions are further 
organized in hierarchies that favor the data aggregation 
process (Cabibbo & Torlone, 1997). Several techniques and algorithms 
have been developed for query processing, most of them involving 
some kind of aggregate precomputation (Harinarayan, Rajaraman, & 
Ullman, 1996). 

The need for OLAP in GIS 
Different data models have been proposed for representing objects in a 
GIS. ESRI (http://www.esri.com) first introduced the Coverage data 
model to bind geometric objects to non-spatial attributes that describe 
them. Later, they extended this model with object-oriented support, in a 
way that behavior can be defined for geographic features (Zeiler, 
1999). The idea of the Coverage data model is also supported by the 
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Reference Model proposed by the Open Geospatial Consortium 
(http://www.opengeospatial.org).  Thus, in spite of the model of choice, 
there is always the underlying idea of binding geometric objects to 
objects or attributes stored in (mostly) object-relational 
databases (Stonebraker & Moore, 1996). In addition, query tools in 
commercial GIS allow users to overlap several thematic layers in order 
to locate objects of interest within an area, like schools or fire stations. 
For this, they use indexing structures based on R-trees (Gutman, 1984). 
GIS query support sometimes includes aggregation of geographic 
measures, for example, distances or areas (e.g., representing different 
geological zones). However, these aggregations are not the only ones 
that are required, as we discuss below. 
Nowadays, organizations need sophisticated GIS-based Decision 
Support System (DSS) to analyze their data with respect to geographic 
information, represented not only as attribute data, but also in maps, 
probably in different thematic layers. In this sense, OLAP and GIS 
vendors are increasingly integrating their products (see, for instance,  
Microstrategy and MapInfo integration in 
http://www.microstrategy.com/, and http://www.mapinfo.com/). In this 
sense, aggregate queries are central to DSSs. Classical aggregate OLAP 
queries (like “total sales of cars in California”), and aggregation 
combined with complex queries involving geometric components 
(“total sales in all villages crossed by the Mississippi river and within a 
radius of 100 km around New Orleans”) must be efficiently supported. 
Moreover, navigation of the results using typical OLAP operations like 
roll-up or drill-down is also required. These operations are not 
supported by commercial GIS in a straightforward way. One of the 
reasons is that the GIS data models discussed above were developed 
with “transactional” queries in mind. Thus, the databases storing non-
spatial attributes or objects are designed to support those (non-
aggregate) kinds of queries. Decision support systems need a different 
data model, where non-spatial data, probably consolidated from 
different sectors in an organization, is stored in a data warehouse. Here, 
numerical data are stored in fact tables built along several dimensions. 
For instance, if we are interested in the sales of certain products in 
stores in a given region, we may consider the sales amounts in a fact 
table over the three dimensions Store, Time and Product. In order to 
guarantee summarizability (Lenz & Shoshani, 1997), dimensions are 
organized into aggregation hierarchies. For example, stores can 
aggregate over cities which in turn can aggregate into regions and 
countries. Each of these aggregation levels can also hold descriptive 
attributes like city population, the area of a region, etc. To fulfill the 
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requirements of integrated GIS-DSS, warehouse data must be linked to 
geographic data. For instance, a polygon representing a region must be 
associated to the region identifier in the warehouse. Besides, system 
integration in commercial GIS is not an easy task. In the current 
commercial applications, the GIS and OLAP worlds are integrated in 
an ad-hoc fashion, probably in a different way (and using different data 
models) each time an implementation is required, even when a data 
warehouse is available for non-spatial data. 

An Introductory Example. We  present now a real-world example for 
illustrating some issues in the spatial warehousing problematic. We 
selected four layers with geographic and geological features obtained 
from the National Atlas Website (http://www.nationalatlas.gov). These 
layers contain the following information: states, cities, and rivers in 
North America, and volcanoes in the northern hemisphere (published 
by the Global Volcanism Program - GVP). Figure 1 shows a detail of 
the layers containing cities and rivers in North America, displayed 
using the graphic interface of the Piet implementation we discuss later 
in the paper. Note the density of the points representing cities 
(particularly in the eastern region). Rivers are represented as polylines. 
Figure 2 shows a portion of two overlayed layers containing states 
(represented as polygons) and volcanoes in the northern hemisphere. 
There is also non-spatial information stored in a conventional data 
warehouse. In this data warehouse, dimension tables contain customer, 
stores and product information, and a fact table contains stores sales 
across time. Also, numerical and textual information on the geographic 
components exist (e.g., population, area), stored as usual as attributes 
of  the GIS layers. 
In the scenario above, conventional GIS and organizational data can be 
integrated for decision support analysis. Sales information could be 
analyzed in the light of geographical features, conveniently displayed 
in maps. This analysis could benefit from the integration of both worlds 
in a single framework. Even though this integration could be possible 
with existing technologies, ad-hoc solutions are expensive because, 
besides requiring lots of complex coding, they are hardly portable. To 
make things more difficult, ad-hoc solutions require data exchange 
between GIS and OLAP applications to be performed. This implies that 
the output of a GIS query must be probably exported as members in 
dimensions of a data cube, and merged for further analysis. For 
example, suppose that a business analyst is interested in studying the 
sales of nautical goods in stores located in cities crossed by rivers. She 
would first query the GIS, to obtain the cities of interest. She probably 
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has stored sales in a data cube containing a dimension Store or 
Geography with city as a dimension level. She would need to 
“manually” select the cities of interest (i.e., the ones returned by the 
GIS query) in the cube, to be able to go on with the analysis (in the best 
case, an ad-hoc customized middleware could help her). Of course, she 
must repeat this for each query involving a (geographic) dimension in 
the data cube. 

 

 
Figure 1. Two overlayed layers containing cities and rivers in North 
America. 
 
 

On the contrary, GIS/Data warehousing integration can provide a more 
natural solution. 
The second part of this survey is devoted to spatio-temporal 
datawarehousing and OLAP. Moving objects databases (MOD) have 
been receiving increasing attention from the database community in 
recent years, mainly due to the wide variety of applications that 
technology allows nowadays. Trajectories of moving objects like cars 
or pedestrians, can be reconstructed by means of samples describing 
the locations of   these objects at  certain points in time. Although there 
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Figure 2. Two overlayed layers containing states in North America and 
volcanoes in the northern hemisphere. 

exist many proposals for modeling and querying moving objects, only a 
small part of them address the problem of aggregation of moving 
objects data in a GIS (Geographic Information Systems) scenario.  
Many interesting applications arise,  involving moving objects 
aggregation, mainly regarding traffic analysis, truck fleet behavior 
analysis, commuter traffic in a city, passenger traffic in an airport, or 
shopping behavior in a mall. Building trajectory data warehouses that 
can integrate with a GIS is an open problem that is starting to attract 
database researchers. Finally, the MOD setting is appropriate for data 
mining tasks, and we also comment on this in the paper.  

In this paper, we first provide a brief background on GIS, data 
warehousing and OLAP, and a review of the state-of-the-art in spatial 
OLAP. After this, we move on to study spatio-temporal data 
warehousing, OLAP and mining. We then provide a detailed analysis 
of the Piet framework, aimed at integrating GIS, OLAP and moving 
object data, and conclude with a comparison between this proposal, and 
the  Hermes data cartrridge  and trajectory data warehouse developed in 
the context of the GeoPKDD project (Information about the GoePKDD 
project can be found at http://www.geopkdd.eu).  
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A SHORT BACKGROUND 
 

GIS 
In general, information in a GIS application is divided over several 
thematic layers. The information in each layer consists of purely spatial 
data on the one hand, that is combined with classical alpha-numeric 
attribute data on the other hand (usually stored in a relational database). 
Two main data models are used for the representation of the spatial part 
of the information within one layer, the vector model and the raster 
model. The choice of model typically depends on the data source from 
which the information is imported into the GIS.  

The Vector Model.  The vector model is used the most in current 
GIS (Kuper & Scholl, 2000). In the vector model, infinite sets of points 
in space are represented as finite geometric structures, or geometries, 
like, for example, points, polylines and polygons. More concretely, 
vector data within a layer consists in a finite number of tuples of the 
form (geometry, attributes) where a geometry can be a point, a polyline 
or a polygon. There are several possible data structures to actually store 
these geometries (Worboys, 1995).  

The Raster Model.  In the raster model, the space is sampled into pixels 
or cells, each one having an associated attribute or set of attributes. 
Usually, these cells form a uniform grid in the plane. For each cell or 
pixel, the sample value of some function is computed and associated to 
the cell as an attribute value, e.g., a numeric value or a color. In 
general, information represented in the raster model is organized into 
zones, where the cells of a zone have the same value for some 
attribute(s). The raster model has very efficient indexing structures and 
it is very well-suited to model continuous change but its disadvantages 
include its size and the cost of computing the zones. 
Spatial information in the different thematic layers in a GIS is often 
joined or overlayed. Queries requiring map overlay are more difficult 
to compute in the vector model than in the raster model. On the other 
hand, the vector model offers a concise representation of the data, 
independent on the resolution. For a uniform treatment of different 
layers given in the vector or the raster model,  in this paper we treat the 
raster model as a special case of the vector model. Indeed, 
conceptually, each cell is, and each pixel can be regarded as, a small 
polygon; also, the attribute value associated to the cell or pixel can be 
regarded as an attribute in the vector model. 
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Data Warehousing and OLAP 
The importance of data analysis has increased significantly in recent 
years as organizations in all sectors are required to improve their 
decision-making processes in order to maintain their competitive 
advantage. We said before that OLAP (On Line Analytical 
Processing) (Kimball, 1996; Kimball & Ross, 2002) comprises a set of 
tools and algorithms that allow efficiently querying databases that 
contain large amounts of data. These databases, usually designed for 
read-only access (in general, updating is performed off-line), are 
denoted data warehouses. Data warehouses are exploited in different 
ways. OLAP is one of them. OLAP systems are based on a 
multidimensional model, which allows a better understanding of data 
for analysis purposes and provides better performance for complex 
analytical queries. The multidimensional model allows viewing data in 
an n-dimensional space, usually called a data cube (Kimball & Ross, 
2002). In this cube, each cell contains a measure or set of (probably 
aggregated) measures of interest. This factual data can be analyzed 
along dimensions of interest, usually organized in hierarchies (Cabibbo 
& Torlone, 1997). Three typical ways of OLAP tools implementation 
exist: MOLAP (standing for multidimensional OLAP), where data is 
stored in proprietary multidimensional structures, ROLAP (relational 
OLAP), where data is stored in (object) relational databases, and 
HOLAP (standing for hybrid OLAP, which provides both solutions. In 
a ROLAP environment, data is organized as a set of dimension tables 
and fact tables, and we assume this organization in the remainder of the 
paper. 
There are a number of OLAP operations that allow exploiting the 
dimensions and their hierarchies, thus providing an interactive data 
analysis environment. Warehouse databases are optimized for OLAP 
operations which, typically, imply data aggregation or de-aggregation 
along a dimension, called roll-up and drill-down, respectively. Other 
operations involve selecting parts of a cube (slice and dice) and re-
orienting the multidimensional view of data (pivoting). In addition to 
the basic operations described above, OLAP tools provide a great 
variety of mathematical, statistical, and financial operators for 
computing ratios, variances, ranks,etc. 
It is an accepted fact that data warehouse (conceptual) design is still an 
open issue in the field (Rizzi & Golfarelli, 2000). Most of the data 
models either provide a graphical representation based on the Entity-
Relationship (E/R) model or UML notations, or they just provide some 
formal definitions without user-oriented graphical support. Recently, 
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Malinowsky and Zimányi (2006) propose the MultiDim model. This 
model is based on the E/R model and provides an intuitive graphical 
notation. Also recently, Vaisman (Vaisman, 2006a, 2006b) introduced 
a methodology for requirement elicitation in Decision Support 
Systems, arguing that methodologies used for OLTP systems are not 
appropriate for OLAP systems. 

Temporal Data Warehouses 
The relational data model as proposed by Codd (1970), is not well-
suited for handling spatial and/or temporal data. Data evolution over 
time must be treated in this model, in the same way as ordinary data. 
This is not enough for applications that require past, present, and/or 
future data values to be dealt with by the database. In real life such 
applications abound. Therefore, in the last decades, much research has 
been done in the field of temporal databases. Snodgrass (1995) 
describes the design of the TSQL2 Temporal Query Language, an 
upward compatible extension of SQL-92. The book, written as a result 
of a Dagstuhl seminar organized in June 1997 by Etzion, Jajodia, and 
Sripada (1998), contains comprehensive bibliography, glossaries for 
both temporal database and time granularity concepts, and summaries 
of work around 1998. The same author (Snodgrass, 1999), in other 
work, discusses practical research issues on temporal database design 
and implementation. 
Regarding temporal data warehousing and OLAP, Mendelzon and 
Vaisman (2000, 2003) proposed a model, denoted TOLAP, and 
developed a prototype and a datalog-like query language, based on a 
(temporal) star schema. Vaisman, Izquierdo, and Ktenas (2006) also 
present a Web-based implementation of this model, along with a query 
language, called TOLAP-QL. Eder, Koncilia, and Morzy (2002) also 
propose a data model for temporal OLAP supporting structural 
changes. Although these efforts, little attention has been devoted to the 
problem of conceptual and logical modeling for temporal data 
warehouses. 

SPATIAL DATA WAREHOUSING AND OLAP 
 

Spatial database systems have been studied for a long time (Buchmann, 
Günther, Smith, & Wang, 1990; Paredaens, Van Den Bussche, & 
Gucht, 1994). Rigaux et al. (2001) survey various techniques, such as 
spatial data models, algorithms, and indexing methods, developed to 
address specific features of spatial data that are not adequately handled 
by mainstream DBMS technology. 
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Although some authors have pointed out the benefits of combining GIS 
and OLAP, not much work has been done in this field. Vega López, 
Snodgrass, and Moon (2005) present a comprehensive survey on 
spatiotemporal aggregation that includes a section on spatial 
aggregation. Also, Bédard, Rivest, and  Proulx (2007) present a review 
of the efforts for integrating OLAP and GIS. As we explain later, 
efficient data aggregation is crucial for a system with GIS-OLAP 
capabilities.  

Conceptual Modeling and SOLAP 
Rivest, Bédard, and Marchand (2001) introduced the concept of 
SOLAP (standing for Spatial OLAP), a paradigm aimed at being able 
to explore spatial data by drilling on maps, in a way analogous to what 
is performed in OLAP with tables and charts. They describe the 
desirable features and operators a SOLAP system should have. 
Although they do not present a formal model for this, SOLAP concepts 
and operators have been implemented in a commercial tool called 
JMAP, developed by the Centre for Research in Geomatics and 
KHEOPS, see http://www.kheops-tech.com/en/jmap/solap.jsp.  
Stefanovic, Han, and Koperski (2000) and Bédard, Merret, and Han 
(2001), classify spatial dimension hierarchies according to their spatial 
references in: (a) non-geometric; (b) geometric to non-geometric; and 
(c) fully geometric. Dimensions of type (a) can be treated as any 
descriptive dimension (Rivest et al., 2001). In dimensions of types (b) 
and (c), a geometry is associated to members of the hierarchies. 
Malinowski and Zimányi (2004) extend this classification to consider 
that even in the absence of several related spatial levels, a dimension 
can be considered spatial. Here, a dimension level is spatial if it is 
represented as a spatial data type (e.g., point, region), allowing them to 
link spatial levels through topological relationships (e.g., contains, 
overlaps). Thus, a spatial dimension is a dimension that contains at 
least one spatial hierarchy. A critical point in spatial dimension 
modeling is the problem of multiple-dependencies, meaning that an 
element in one level can be related to more than one element in a level 
above it in the hierarchy.  Jensen, Kligys, Pedersen, and Timko (2004) 
address this issue, and propose a multidimensional data model for 
mobile services, i.e., services that deliver content to users, depending 
on their location. This model supports different kinds of dimension 
hierarchies, most remarkably multiple hierarchies in the same 
dimension, i.e., multiple aggregation paths. Full and partial 
containment hierarchies are also supported. However, the model does 
not consider the geometry, limiting the set of queries that can be 
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addressed. This means that spatial dimensions are standard dimensions 
referring to some geographical element (like cities or roads). 
Malinowski and Zimányi (2006) also propose a model supporting 
multiple aggregation paths. 
Pourabbas (2003) introduces a conceptual model that uses binding 
attributes to bridge the gap between spatial databases and a data cube. 
The approach relies on the assumption that all the cells in the cube 
contain a value, which is not the usual case in practice, as the author 
expresses. Also, the approach requires modifying the structure of the 
spatial data to support the model. No implementation is presented.  
Shekhar, Lu, Tan, Chawla, & Vatsavai (2001) introduced MapCube, a 
visualization tool for spatial data cubes. MapCube is an operator that, 
given a so-called base map, cartographic preferences and an 
aggregation hierarchy, produces an album of maps that can be 
navigated via roll-up and drill-down operations. 

Spatial Measures. Measures are characterized in two ways in the 
literature, namely: (a) measures representing a geometry, which can be 
aggregated along the dimensions; (b) a numerical value, using a 
topological or metric operator. Most proposals support option (a), 
either as a set of coordinates (Bédard et al., 2001; Rivest et al., 2001; 
Malinowski & Zimányi, 2004; Bimonte, Tchounikine, & Miquel, 
2005), or a set of pointers to geometric objects (Stefanovic et al., 
2000). Bimonte et al. (Bimonte et al., 2005) define measures as 
complex objects (a measure is thus an object containing several 
attributes).  Malinowski and Zimányi (2004) follow a similar approach, 
but defining measures as attributes of an n-ary fact relationship 
between dimensions. 
Damiani and Spaccapietra (2006) propose MuSD, a model allowing 
defining spatial measures at different granularities. Here, a spatial 
measure can represent the location of a fact at multiple levels of 
(spatial) granularity. Also, an algebra of SOLAP operators is proposed. 

Spatial Aggregation 
In light of the discussion above, it should be clear that aggregation is a 
crucial issue in spatial OLAP. Moreover, there is not yet a consensus 
about a complete set of aggregate operators for spatial OLAP. We now 
discuss the classic approaches to spatial aggregation. 
Han et al. (1998) use OLAP techniques for materializing selected 
spatial objects, and proposed a so-called Spatial Data Cube, and the set 
of operations that can be performed on this data cube. The model only 
supports aggregation of spatial objects. 
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Pedersen and Tryfona (2001) propose the pre-aggregation of spatial 
facts. First, they pre-process these facts, computing their disjoint parts 
in order to be able to aggregate them later. This pre-aggregation works 
if the spatial properties of the objects are distributive over some 
aggregate function. Again, the spatial measures are geometric objects.  
Given that this proposal ignores the geometries, queries like “total 
population of cities crossed by a river” are not supported. The paper 
does not address forms other than polygons, although the authors claim 
that other more complex forms are supported by the method, and the 
authors do not report experimental results. 
With a different approach, Rao, Zhang, Yu, Li, and Chen (2003), and 
Zhang, Li, Rao, Yu, Chen, and Liu (2003) combine OLAP and GIS for 
querying so-called spatial data warehouses, using R-trees for accessing 
data in fact tables. The data warehouse is then exploited in the usual 
OLAP way. Thus, they take advantage of OLAP hierarchies for 
locating information in the R-tree which indexes the fact table. 
Although the measures here are not only spatial objects, the proposal 
also ignores the geometric part of the model, limiting the scope of the 
queries that can be addressed. It is assumed that some fact table, 
containing the identifiers of spatial objects exists. Finally, these objects 
happen to be points, which is quite unrealistic in a GIS environment, 
where different types of objects appear in the different layers. 
Some interesting techniques have been recently introduced to address 
the data aggregation problem. These techniques are based on the 
combined use of (R-tree-based) indexes, materialization (or pre-
aggregation) of aggregate measures, and computational geometry 
algorithms. 
Papadias, Tao, Kalnis, and Zhang (2002) introduce the Aggregation R-
tree (aR-tree), combining indexing with pre-aggregation. The aR-tree is 
an R-tree that annotates each MBR (Minimal Bounding Rectangle) 
with the value of the aggregate function for all the objects that are 
enclosed by it. They extend this proposal in order to handle historic 
information (see the section on moving object data below), denoting 
this extension aRB-tree (Papadias, Tao, Zhang, Mamoulis, Shen, and & 
Sun, 2002). The approach basically consists in two kinds of indexes: a 
host index, which is an R-tree with the summarized information, and a 
B-tree containing time-varying aggregate data. In the most general 
case, each region has a B-tree associated, with the historical 
information of the measures of interest in the region. This is a very 
efficient solution for some kinds of queries, for example, window 
aggregate queries (i.e., for the computation of the aggregate measure of 
the regions which intersect a spatio-temporal window). In addition, the 

12 



method is very effective when a query is posed over a query region 
whose intersection with the objects in a map must be computed on-the-
fly, and these objects are totally enclosed in the query region. However, 
problems may appear when leaf entries partially overlap the query 
window. In this case, the result must be estimated, or the actual results 
computed using the base tables. In fact, Tao, Kollios, Considine, Li, 
and Papadias (2004), show that the aRB-tree can suffer from the 
distinct counting problem, if the object remains in the same region for 
several timestamps. 

SPATIO-TEMPORAL DATA WAREHOUSING, OLAP AND 
MINING 

 
The field of moving objects databases has been extensively studied in 
the last ten years, mainly regarding data modeling an indexing. Güting 
and Schneider (2005) provide a good reference to this large corpus of 
work. Moving objects, carrying location-aware devices, produce 
trajectory data in the form of a sample of (Oid,x,y,t)-tuples, that contain 
object identifier and time-space information.  In this survey, we will 
focus on the problem of building trajectory data warehouses and 
exploiting them through OLAP and data mining techniques. 

Modeling 
Generally speaking, in order to support trajectory data a spatio-
temporal data cube should allow analysis along (a) temporal 
dimensions; (b) spatial dimensions at different levels of granularity 
(point, cell, road); (c) thematic dimensions, containing, for instance, 
demographic data. In this sense, hierarchies must take into account the 
fact that an element may rollup to more than one in an upper level. For 
instance, a road can probably cross more that one cell, thus, there is no 
function from a level cell to a level road. It is worth noticing that some 
proposals deal with this problem defining complex relationships (e.g., 
containment) in the dimension hierarchies (Jensen et al., 2004), which 
in general, lead to approximations. The Piet framework, discussed 
below, defines different GIS dimensions for different kinds of 
geometries. In the former example, the query language would handle 
the problem  of finding out the cells that intersect the road. 
 Wolfson, Sistla, Xu, and Chamberlain (1999) define a set of 
capabilities that a moving object database must have, and introduce the 
DOMINO system, that develops those features on top of existing 
database management systems (DBMS). Hornsby and 
Egenhofer (2002) introduce a framework for modeling moving objects, 
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which supports viewing objects at different granularities, depending on 
the sampling time interval. The basic modeling element they consider 
is a geospatial lifeline, which is composed of triples of the form 
<Id,location,time>, where Id is the identifier of the object, location is 
given by x-y coordinates, and time is the timestamp of the observation. 
The possible positions of an object between two observations is 
estimated to be within two inverted half-cones that conform a lifeline 
bead, whose projection over the x-y plane is an ellipse. 
Particular interest has received the topic of moving objects on road 
networks. Van de Weghe et al. propose a qualitative trajectory calculus 
for objects in a GIS (Weghe, Cohn, Tré, & Maeyer, 2005), based on the 
assumption that in a GIS scenario, qualitative information is necessary 
(and, in general, more useful than quantitative information). For mining 
trajectories in road networks, Brakatsoulas, Pfoser, and Tryfona (2004) 
propose to enrich trajectories of moving objects with information about 
the relationships between trajectories (e.g., intersect, meets), and 
between a trajectory and the GIS environment (stay within, bypass, 
leave). They also proposed a mining language denoted SML (for 
Spatial Mining Language). This language is oriented to traffic 
networks, and it is not clear how it could be extended to other 
scenarios. Moreover, all information on moving objects must be 
processed (on the contrary, we use semantic information to reduce, if 
possible, the amount of data to be considered). 
Also in the framework of road traffic mining, Gonzalez, Han, Li, 
Myslinska, and Sondag (2007) use a partitioning approach for 
obtaining interesting driving and speed patterns from large sets of 
traffic data. They compute frequent path-segments at the area level 
with a support relative to the traffic in the area (i.e., a kind of 
adaptative support), and propose an algorithm to automatically partition 
a road network and build a hierarchy of areas. 
The work of Lee, Han, and Whang (2007) is aimed at discovering 
common sub-trajectories, using a partitioning strategy which divides a 
trajectory into a set of line segments, and then groups similar line 
segments together into a cluster. 
Like in the case of spatial OLAP (and multidimensional databases, in 
general), from the conceptual modeling point of view, there has not 
been much interest from the database community. Malinowski and 
Zimányi (2006) propose a model to provide a graphical representation, 
based on the Entity/Relationship model, and on UML. To the best of 
our knowledge, the Piet data model discussed in detail below, is the 
first attempt to provide a formal framework for integrating spatio-
temporal data with OLAP and data warehousing. 
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Adding Semantic Information to Trajectory Data 
Techniques that add semantic information to trajectory data have been 
recently proposed. Mouza and Rigaux (2005) present a model where 
trajectories are represented by a sequence of moves. They propose a 
query language based on regular expressions, aimed at obtaining so-
called mobility patterns. Note that this language, as well as the 
proposals commented above, does not relate trajectories with the GIS 
environment, which limits the types of queries that can be addressed. 
Along the same lines, Damiani, Macedo, Parent, Porto, and 
Spaccapietra (2007) introduced the concept of stops and moves, in 
order to enrich trajectories with semantically annotated data. Below, we 
will give more details about the stops and moves paradigm. 
Giannotti, Nanni, Pinelli, and Pedreschi (2007) studied trajectory 
pattern mining, based on so-called Temporally Annotated Sequences 
(TAS), an extension of sequential patterns, where  a temporal 
annotation  between two nodes is defined. In this way, the sequence  
<s1,2,s2> defines a pattern that starts at s1 and after two seconds 
arrives at s2. In other words, a trajectory pattern is a set of trajectories 
that visit the same sequence of places with similar travel times between 
each of them. They also propose three different mining methods. They 
also introduce the concept of Region of Interest (RoI). In the paper, the 
authors focused on computing the RoIs dynamically from the 
trajectories. Along similar lines, Gómez, Kuijpers, and Vaisman 
(2008a,2008b) present a model and implementation where trajectories 
are replaced by sequences of stops and moves, also following the ideas 
of Alvares et al. (2007). This work differs from the one of Giannotti et 
al. (2007) in several ways: first, the authors work with stops and moves 
instead of pre-defined regions of interest. This allows identifying which 
of the RoIs are really relevant to a trajectory. Second, the stops and 
moves are used to “encode” or compress a trajectory, which, in many 
practical situations turns out to be enough to identify interesting 
sequences very efficiently. A third difference is that in this proposal, 
the user defines the places of interest of an application in advance, and 
then they compute the stops and moves to perform trajectory mining. 
Finally, the approach of Gómez et al. (2007) allows integration 
between trajectories and geographic data, an issue mentioned albeit not 
addressed in (Giannotti et al., 2007). 

Trajectory Similarity and Aggregation 
The problem of trajectory similarity and aggregation in moving object 
databases is a new topic in the spatio-temporal database literature. 
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Existing work focuses on the spatial notion of similarity, sometimes 
borrowing from the time-series analysis field. This is the approach 
followed by Pelekis, Kopanakis, Ntoutsi,  Marketos, Andrienko, and  
Theodoridis (2007), and Pelekis, Kopanakis, Ntoutsi,  Marketos,  and  
Theodoridis (2007), who introduce a framework consisting of a set of 
distance operators based on parameters of trajectories like speed and 
direction, and propose distance operators based on this. Frentzos, 
Gratsias, and Theodoridis (2007) propose an approximation method for 
supporting the k-most-similar-trajectory search using R-tree structures. 
Data aggregation is still quite an open field, either in GIS or in a 
moving objects scenario. Meratnia and de By (2002) study trajectory 
aggregation by identifying similar trajectories, merging them in a 
single one, and dividing the area under study into homogeneous spatial 
units. We commented above the work of Papadias et al (2002), about 
indexing of historical aggregate information about moving objects. 
Kuijpers and Vaisman (2007) presented a taxonomy of aggregate 
queries on moving object data. The model and query language we 
present here covers the different types of aggregation queries in this 
taxonomy. 

The Hermes System and the GeoPKDD  Trajectory Data Warehouse 
Among a limited number of proposals for trajectory data warehouses, 
the work by Orlando, Orsini, Raffaetà, Roncato, and Silvestri (2007) is 
worth an in-depth discussion. They build a trajectory data warehouse 
aimed at providing the infrastructure needed to deliver advanced 
reporting capabilities and facilitating the application of mining 
algorithms on aggregate data, for the GeoPKDD project (see 
http://www.geopkdd.eu). Since this project is based in the Hermes 
architecture, we first give a brief overview of the Hermes system  
(Pelekis, N., Theodoridis, Y., Vosinakis, S., and  Panayiotopoulos, T., 
2006; Pelekis & Theodoridis, 2006). 
The Hermes System for Location-Based Services. Hermes  provides the 
functionality needed for handling two-dimensional objects that change 
location, shape and size, through  three kinds of data types: (a) static 
base data types (b) static temporal data types; (c) static  spatial types; 
(d) moving  data types. Data of type (a) are the standard DBMS data 
types (integer, real, etc.). Data of type (b) are based on the so-called 
TAU temporal object model (Kakoudakis, 1996), and provide Hermes 
with temporal object-relational capabilities, through a library denoted 
TAU-TLL  (Pelekis, 2002). The new temporal data types supported 
(extending the ODMG data model) are Timepoint, Period, and 
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Temporal Element. The spatial data types (c) are provided by the 
Oracle Spatial library. The object type defined in Oracle, and used by 
Hermes, is called Sdo_Geometry. The Moving data type (d) 
encapsulates semantics and functionality of different data types: 
moving point, linestring, circle, rectangle, polygon, and moving 
collection. Below these types, a class hierarchy is defined. The basic 
type is moving point, defined as a sequence of different types of simple 
functions. It is based on the sliced representation proposed by Güting, 
Böhlen, Jensen, Lorentzos, Schneider, and  M. & Vazirgiannis  (2000). 
Here, a temporal development of a moving object is decomposed in 
slices such that, between each slice, a simple function is defined. The 
idea is to decompose the definition of each moving type into several 
definitions, one for each function. The composition of these sub-
definitions defines a moving type. This way, a unit_function models the 
case where a user is located at a point (xi,yi) and moves, with initial 
velocity v and acceleration a or a linear or circular arc route. A flag 
indicates the type of movement. The point (xe,ye) is the end point of the 
movement. The unit function along with the period object type, 
conforms the moving point data type, which is the basis for the other 
types. For instance, the type moving circle is formed by the function 
unit_moving_circle plus the period data type. In turn, the former is 
composed of three unit_moving_point objects. Details on these data 
types can be found in (Pelekis & Theodoridis, 2006). The objects 
belonging to the moving type are provided with a set of operations: (a) 
topological and distance predicates, like within_distance; (b) temporal 
functions, like add_unit (adds a new unit of movement), and at_instant 
(returns the union of the projection of a moving object at a time 
instant); (c) distance and direction operators (for instance, the distance 
between two moving objects); (d) set relationships (like intersection). 
Also, numeric operations on objects are supported, like area or length. 
In consequence, it would be easy to compute, for instance, the area of 
an object at a given time instant.  
The Hermes architecture can be described as follows: the basic 
components are the TAU-TLL library, the Oracle spatial cartridge and 
the Hermes-MDC (Moving Data Cartridge), which includes the moving 
data types. PL-SQL statements, which are compiled and stored in 
binary form, use those cartridges and data types. Thus, the PL-SQL 
statements are available for interacting with Oracle 10g data structures. 
Applications written, for instance, in Java, can consume these data. The 
types of queries supported by Hermes are: (a) queries on stationary 
objects, like: point, range, distance-based, topological, and nearest-
neighbor queries; (b) queries on moving reference objects (distance-
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based and similarity queries); (c) Join queries; (d) queries involving 
unary operators (traveled distance, speed).   
 
Actually, given that Hermes consists, essentially, in a set of data types, 
an application designer can define a database schema that uses these 
data types, and take advantage of their functionality. For example, to 
describe the movement of a toxic cloud, one could define  a relation: 
 
              Cloud (id:integer, name: varchar, shape: moving_polygon) 
 
Then, an application programmer could write code that uses these data 
structures, to find, for instance, when did the cloud arrived to 
California. Obviously, formally, the expressive power is provided by 
the data types, because there is no language associated to Hermes. 
Instead, a host language (Java, PL-SQL, both), is used. 
    
Having introduced Hermes, we are ready to discuss the spatio-temporal 
data warehousing architecture for GeoPKDD 
 
The GeoPKDD Trajectory Data Warehouse.  Figure 3, taken from 
Damiani, Vangenot, Frentzos, Marketos, Theodoridis, Veryklos, and 
Raffaeta (2007), depicts the GeoPKDD trajectory warehouse 
architecture (TDW).  Initially, location data is captured, and handled by 
a so-called trajectory stream manager, which builds trajectories from 
these data (e.g., splitting the raw data according to some criteria, 
providing a trajectory identifier, among other functionalities. These 
trajectories are stored in a relational table, denoted RelTrajectories, and 
then loaded into a moving object database (MOD), which is in turn 
managed by the Hermes system introduced above. Basically, the  MOD 
includes a relation MODTrajectories with schema (Oid ,trajectoryid, 
trajectory), where trajectory is of type Moving Point. Actually, 
although this may appear redundant, since trajectories are stored twice, 
this is required to be able to work with  the the moving point data type.  
Finally, an ETL (Extraction, Transformation, and Loading) process, 
feeds the TDW. Queries to this warehouse can integrate geographical 
data. Below, we give details of the TDW. 
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Figure 3. The trajectory warehouse architecture.  
 
The trajectory data warehouse model proposed upon the criteria 
commented above, is based on the classic star schema. It contains a 
standard temporal dimension, and two spatial dimensions. The former 
ranges over equally sized time intervals, which are aggregated 
according to larger intervals as we move up in the dimension hierarchy 
(e.g., the interval [60,120] aggregates over the interval [0,120]). The 
spatial dimensions, denoted DimX and DimY, range over equally sized 
spatial intervals (x,y, respectively), defining the cells where measures 
are recorded. A fact table containing references to the dimensions and 
(some of) the measures commented above, exists, in this case, 
presence, crossX, crossY, and crossT, where, for instance, crossX is the 
number of distinct trajectories crossing the spatial border between two 
cells along the horizontal axis. Roll-up and drill-down are performed 
aggregating measures over the cells, at different granularities (for 
instance, combining two or more cells). The key of this fact table is 
composed of the keys of the dimensions, namely dimX_id, dimY_id, 
dimT_id. We remark that the actual implementation has a slightly 
different form than this model, although for presentation clarity, in 
what follows  we  base ourselves on this structure.  The interested 
reader can see Marketos, G., Frentzos, E., Ntousi, I., Pelekis, N., 
Raffaeta, A., & Theodoridis, Y. (2008) for the actual implementation. 
It is important to note that no trajectory information is recorded in the 
TDW. This information lies only in the MOD, and can be used for 
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querying, along with the information in the TDW, in order to obtain 
higher level information.  In addition,  
modeling and storing trajectories is performed with Hermes.  

A relevant feature of the TDW proposal is the treatment given to the 
ETL process, that transform the raw location data and loads it to the 
trajectory data warehouse. This process design is aimed at minimizing 
the amount of memory needed to load and transform raw data into 
trajectory data. For this, Orlando et al. (2007) define a model 
supporting two equivalent forms of trajectory representation: (a) the 
standard (Oid,x,y,t); (b) an alternative representation where coordinates 
in the trajectory database are replaced by cell identifiers that cover the 
(x,y) points. In this case, the tuples in the trajectory database are of the 
form (Oid,Cellid,t) In addition, other information of interest could be 
recorded, like, for instance, signal strength. As we explained above, the 
raw location data (usually arriving as a continuous data stream) is 
transformed into trajectory data, splitting the former according to 
certain assumptions like, for instance, if a large time gap between two 
consecutive sampled positions, a new trajectory identifier is created 
starting from the latter position. 
 
The TDW introduced at the beginning of this section, is based on 
requirements that the authors defined for the dimensions and measures. 
We now discuss the rationale for this design. For the dimensions, they 
include temporal, spatial and thematic dimensions. The choice for the 
measures impact on the design and query evaluation processes. Typical 
measures include: (a) number of trajectories in a cell; (b) number of 
trajectories entering and/or leaving a cell, denoted presence  
(Cx,y.presence); (c) number of objects in a cell in a certain interval; (d) 
distance covered by trajectories in the cell, and the time spent in a cell; 
(e) velocity of trajectories in the cell. OLAP operations require 
aggregation of these measures over the set of cells. The problem of 
double counting arises for some of these measures, like (a) above. This 
problem appears not only during aggregation of the base data during a 
roll-up operation, but also in the loading phase. For example, suppose 
we have three consecutive observations o1, o2 and o3; further, o1 and 
o3 fall in the same cell, but o2 does not. When o3 arrives, the system 
stores a duplicate for Cx,y.presence  (recall data is assumed to come as a 
continuous input stream). The presence measure deserved an in-depth 
treatment in (Orlando et al., 2007), where the problem of multiple 
counting was addressed, and some strategies for approximating the 
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results of computing the pre-aggregated facts were proposed. For 
instance, linear interpolation is used to prevent omitting in the result 
the cells crossed by a trajectory but such that no sampling occurred 
within them. Finally, two alternative functions for computing the 
aggregate presence are defined and compared against each other: one 
algebraic, and one distributive. The authors address the problem of 
double counting during aggregation, borrowing from statistical 
methods. For example, knowing the values of presence for two cells, 
Cx,y and Cx+1,y, and defining a new cell, Cx’,y’=  Cx,y  U Cx+1,y, the 
aggregate presence over the new cell, will be: 

 
Cx’,y’.presence = Cx,y.presence + Cx+1,y.presence - Cx,y.crossX 
 

where Cx,y.crossX is the number of distinct trajectories crossing the 
spatial border between  Cx,y and Cx+1,y. 
 
Some example queries are provided in Orlando et al. (2007), and the 
two presence functions implemented (i.e., distributive and algebraic). It 
is reported that algebraic presence is more difficult to implement 
because it requires the combination of several aggregate functions and 
using non/standard SQL operations. The experiments reported showed 
that the distributive function (sum) quickly reaches large errors when 
the roll-up granularity increases. The algebraic method resulted to be 
more accurate. 
 
With respect to querying the TDW, and from the point of view of the 
expressive power of the proposal, considerations here are similar to the 
ones we made when discussing Hermes.  The data types provide the 
functionality, and clients can consume them. Of course, this allows any 
external data to participate in any query. However, again, the formal 
model is embedded in the data types, and the TDW can be regarded as 
an application where queries are built on top of the former. This is 
reflected in the fact that the warehouse contains only aggregated 
information, and the MOD contains the moving point type.  
The following is an example of a query over the MOD, showing a 
temporal intersection, taken from the TDW demo website.  
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SELECT   
m.trajectory.at_period(tau_tll.d_period_sec(tau_tll.
D_Timepoint_Sec(2006,11,24,7,45,0),   
tau_tll.D_Timepoint_Sec(2006,11,24,7,52,0))).to_stri
ng() as trajectory  
FROM modtrajectories m where m.obj_id=1 and 
m.traj_id=87 

 
Here we can see that the table in the FROM clause is 
MODTrajectories, which includes the moving point data type.   These 
kinds of queries could also use the fact tables that contain aggregate 
data. Dimensions and fact tables could also be analyzed using any 
OLAP viewer.  

THE PIET FRAMEWORK 
 

An approach different from the ones discussed previously in this paper 
was presented in the Piet framework (http://piet.exp.dc.uba.ar/piet). 
The Piet data model was introduced by Escribano, Gomez, Kuijpers, 
and Vaisman (2007) and Gómez, Haesevoets, Kuijpers, and Vaisman 
(2007). The core idea is the integration of spatial, spatio-temporal, and 
non-spatial data, in a single framework, oriented to solve many of the 
problems discussed in Section “Data Warehousing and OLAP”.   

Dimensions 
The model defines a GIS dimension as composed of a set of graphs, 
each one describing a set of geometries in a thematic layer. A GIS 
dimension is considered, as usual in databases, as composed of a 
schema and instances. Figure 4 shows the schema of a GIS dimension: 
the bottom level of each hierarchy, denoted the Algebraic part, 
contains the infinite points in a layer, and could be described by means 
of linear algebraic equalities and inequalities (Paredaens, Kuper, & 
Libkin, 2000). Above this part there is the Geometric part, which stores 
the identifiers of the geometric elements of the GIS, and is used to 
solve the geometric part of a query. Each point in the Algebraic part 
may correspond to one or more elements in the Geometric part (e.g., if 
more than one polylines intersect with each other). Thus, at the GIS 
dimension instance level we will have rollup relations (denoted 

).  For instance,  says that, in a layer 
Lcity a point (x,y) corresponds to a polygon identified by pg1 in the 
Geometric part. In spite of this, the authors propose a mechanism to 
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precompute the overlayed layers in the map, that turns these relations 
back into rollup function, i.e., where a point (x,y) will correspond to 
exactly one geometry identifier. Finally, there is the OLAP part for 
storing non-spatial data. This part contains the conventional OLAP 
structures, as defined in (Hurtado, Mendelzon, & Vaisman, 1999). The 
levels in the geometric part are associated to the OLAP part via a 
function, denoted  For instance,  associates 
information about a river in the OLAP part (riverId) in a dimension 
Rivers, to the identifier of a polyline (gr) in a layer denoted Lr, which  
represents rivers in the Geometric part. 

 
Figure 4. An example of a GIS dimension Schema 

Example 1. Figure 4 shows a GIS dimension schema, where we 
defined three layers, for rivers, volcanoes, and states, respectively. The 
schema is composed of three graphs; the graph for rivers, for instance, 
contains edges saying that a point (x,y) in the algebraic part relates to 
line identifiers in the geometric part, and that in the same portion of the 
dimension, lines relate to polyline identifiers. In the OLAP part we 
have two dimensions, representing districts and rivers, associated to the 
corresponding graphs, as the figure shows. For example, a river 
identifier at the bottom layer of the dimension representing rivers in the 
OLAP part, is mapped to the polyline level in the geometric part in the 
graph representing the structure of the rivers layer. 
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Figure 5 shows a portion of a GIS dimension instance for the rivers 
layer Lr in the dimension schema of Figure 4. We can see that an 
instance of a GIS dimension in the OLAP part is associated (via the  
function) to the polyline pl1 which corresponds to the Colorado river. 
For clarity, we only show four different points at the point level (x1,y1) 
… (x4,y4). There is a relation  containing the association of 
points to the lines in the line level. Analogously, there is also a relation 

  between the line and polyline levels, in the same layer. � 
 
Time in the OLAP part will be represented by a Time dimension 
(actually, there could be more than one Time dimension, supporting, 
for example, different notions of time). As it is well-known in OLAP, 
this dimension can have different configurations that depend on the 
application at hand. 

 
Figure 5. A GIS dimension instance for Figure 4. 

Measures and Facts 
A key point in the Piet model is the way it accounts for measures and 
fact tables. Most of the proposals discussed above consider spatial 
measures, and apply OLAP operators over them. Piet is capable of 
working in this way, operating over the GIS dimensions (the authors 
define the concept of spatial aggregation for this), but also of using 
facts defined in the OLAP part, to support spatial DSS queries, like the 
ones commented in the introductory section of this paper. Thus, 
elements in the geometric part are associated with facts, each fact being 
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quantified by one or more measures, not necessarily a numeric value. 
The following example gives the intuition of a so-called GIS fact table. 
For details, we refer the reader to (Gómez et al., 2007). 
Example 2. Consider a fact table containing state populations. Also 
assume that this information will be stored at the polygon level. In this 
case, the fact table schema would be (polyId,Ls,population) where 
polyId is the polygon identifier, Ls represents the states layer, and 
population is the measure. If information about, for example, 
temperature data, is stored at the point level, we would have a base fact 
table with schema (point, Le,temperature), with instances of the form 
(x1,y1,Le,25) Note that temporal information could be also stored in 
these fact tables, by simply adding the time dimension to the fact table. 
This would allow storing temperature information across time. � 
Example 2  shows that, basically, a GIS fact table is a standard OLAP 
fact table where one of the dimensions is composed of geometric 
objects in a layer. Classical fact tables in the OLAP part, defined in 
terms of the OLAP dimension schemas can also exist. For instance, 
instead of storing the population associated to a polygon identifier, this 
information may reside in a data warehouse, with schema 
(state,population). 

Geometric Aggregation 
Based on the data model described above, the notion of geometric 
aggregation was defined. However, in general, geometric aggregation 
queries are hard to evaluate, because they require the computation of a 
double integral representing the area where some condition is satisfied. 
Thus, Piet addresses a class of queries denoted summable, of the form: 

, where h is a function (represented, for instance, by a fact 
table), and the sum is performed over all the identifiers of the objects 
that satisfy a condition. For example, the query “total population of the 
cities crossed by the Colorado River would read: 
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The meaning of the query is:  maps the identifier 
of the Colorado river to a polyline in layer Lr (representing rivers). The 
relation  contains the mapping between the points and 
the polylines representing the rivers that satisfy the condition. The 
other functions are analogous. Thus, the identifiers of the geometric 
elements that satisfy both conditions can be retrieved, and the sum of 
ftpop (which represents the population associated to a polygon gid) 
over these objects can be performed. 

Discussion 
Piet supports four kinds of queries: (a) Pure Geometric Queries, like 
“Districts crossed by at least one river”; (b) Geometric Aggregation 
Queries, like “List each region, along with the total number of rivers 
that crossed it”, or “For each region show the total length of the part of 
rivers which intersects it, only for regions with at least an area under 
cereal cultivation equal or higher than 1000 Km2”; (c) Geometric 
Aggregation Queries limited to a query region, like “List each region 
with the total number of rivers that crossed it, considering only the part 
of the river that lies within the query region”; (d) GISOLAP Queries 
which integrate GIS and OLAP in a very natural way. A query of this 
kind is, for example, “Unit Sales, Store Cost and Store Sales for 
products and promotion media offered by stores only in provinces 
crossed by rivers”.  These queries can be expressed in the Piet-QL 
language (Gómez, Vaisman, & Zich, 2008). Piet-QL also allows to 
place constraints over a data cube, including pre-aggregated facts into 
the WHERE clause. (A functional demo of Piet-QL, and some example 
queries  can be fount at http://piet.exp.dc.uba.ar/pietql). A typical 
example of a Piet-QL query is:  
 
“Names of cities in provinces crossed by the Dÿle river, in Belgium, 
such that the cities had sales greater than 5000 units.”  
 
Variables in Piet-QL range over elements in the thematic layers. Thus, 
in the FROM clause below, the expression bel_city lc1 means that lc1 
will be instantiated with all the polygonsrepresenting cities in the layer 
bel_city. 
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SELECT GIS lc1.name  
FROM bel_city lc1, bel_prov lp2, bel_river lr2 
WHERE contains(lp2,lc1) AND 
intersects(lp2,lr2) AND  lr2.name=“Dÿle”  
AND lc1 IN(  

SELECT CUBE 
filter([Store].[Store City].Members, 
[Measures].[Unit Sales]>5000) 
FROM [Sales])  
AND lp2 IN( 

SELECT CUBE 
filter([Store].[Store City].Members, 
[Measures].[Unit Sales]>0) 
FROM [Sales])) 

Piet-QL supports the following kinds of queries: (a) pure GIS queries; 
(b) pure OLAP queries; (c) GIS queries filtered with aggregation (i.e., 
filtered using a data cube); (d) OLAP queries filtered using a geometric 
or geographic condition. The query above corresponds to class (c).  

If we consider the classification proposed by Pelekis et.al., (2004),   
attribute, point, range, distance-based, nearest neighbor and topological 
queries are supported by Piet-QL (i.e., geometric queries). Note that 
these queries could be used to build the other ones, that include 
aggregation and OLAP capabilities. 

Overlay Pre-computation in Piet. Many interesting queries in GIS 
require computing intersections, unions, etc., of objects that are in 
different layers. Hereto, their overlay has to be computed. For the 
summable queries defined above, on-the-fly computation of the sets 
“C” containing all those cities in the example, would be costly, mainly 
because most of the time we will need to go down to the Algebraic part 
of the system, and compute the intersection between the geometries 
(e.g., states and rivers, cities and airports).  In addition to the typical R-
tree-based techniques commented in previous sections, Piet  
implements a different strategy for materialization, consisting in three 
steps: (a) partitioning each layer in sub-geoemetries, according to the 
carrier lines defined by the geometries in each layer (see below); this 
allows detecting which geographic regions are common to the layers 
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involved; (b) pre-computing the overlay operation; (c) evaluating the 
queries using the layer containing all the pre-computed sub-geometries 
. 

 
 
Figure 6. The carrier sets of a point, a polyline and a polygon are the 
dotted lines. 

The carrier set of a layer induces a partition of the plane into open 
convex polygons, open line segments and points. Thus, the rollup 
relations r will turn into functions (given that no two points can map to 
the same open convex polygon). Given CL and a bounding box, we 
denote the convex polygonization of L, the set of open convex 
polygons, open line segments and points, induced by CL, that are 
strictly inside the bounding box. Given two layers L1 and L2, and their 
carrier sets CL1

 and CL2
, the common sub-polygonization of L1 

according to L2, denoted  is a refinement of the convex 
polygonization of L1, computed by partitioning each open convex 
polygon and each open line segment in it along the carriers of CL2

. 

This can be generalized for more than two layers. Figure 6 illustrates 
the carrier sets of a point, a polyline and a polygon. 
Experimental evaluation showed that overlay pre-computation (i.e., 
pre-computing the common sub-polygonization) in general can perform 
better that R-trees, and also be competitive with aR-trees, except when 
the query region must be computed in running time, because computing 
the intersection between the query region and the common sub-
polygonization, turns out to be expensive in some situations (Escribano 
et al., 2007). 
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EXTENDING THE PIET FRAMEWORK TO TRAJECTORY 
DATA 

 
Moving objects are integrated in the framework presented above, by 
means of a distinguished fact table that we denote Moving Object Fact 
Table (MOFT). 
Let us introduce an example. Figure 7 (left) shows a (very) simplified 
map of Paris, containing two hotels, denoted Hotel 1 and Hotel 2 (H1 
and H2 from here on), the Louvre and the Eiffel tower. We consider 
three moving objects, O1, O2 and O3. Object O1 goes from H1 to the 
Louvre, the Eiffel tower, spends just a few minutes there, and returns to 
the hotel. Object O2 goes from H2 to the Louvre, the Eiffel tower, 
(spending a couple of hours visiting each place), and returns to the 
hotel. Object O3 leaves H2 to the Eiffel tower, visits the place, and 
returns to H2. Figure 7 (center) shows part of these trajectory samples. 
All points of the same trajectory are temporally ordered and stored 
together (i.e., the raw trajectories table is sorted by Oid and t). In what 
follows, we will use the object identifier as the trajectory identifier, 
unless specified, although it is usual to generate a trajectory identifier 
in a pre-processing step. This is motivated by the fact that,in general, 
trajectories are given as continuous data streams, that need to be 
partitioned according to a certain criteria, for example, when a 
minimum amount of time without movement occurs. In that case, Oid 
will not be a trajectory identifier any longer. 
In this scenario, for instance, a GIS user may be interested in queries 
like “number of persons going from H1 to the Louvre and then to the 
Eiffel tower (stopping to visit both places) in the same day”. Also, a 
data mining analyst may want to identify interesting patterns in the 
trajectory data using association rule mining or sequential patterns 
algorithms, like “people do not visit two museums in the same day”. 
Complex queries that aggregate non-spatial information, and also 
involve GIS and moving object data, must also be addressed. For 
instance, “total sales in museum shops, for museums located on the left 
bank of the Seine, such that people visit them before going to the Eiffel 
Tower in the same day”. 
A moving object fact table (MOFT for short, see the table in the center 
of Figure 7), contains a finite number of identified trajectories. 
Definition 1 formalizes this. 
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Definition 1 (Moving  Object Fact  Table) Given a finite set T of 
trajectories, a Moving Object Fact Table (MOFT) for T is a relation 
with schema <Oid, T, X,Y>, where Oid is the identifier of the moving 
object, T represents time instants, and X and Y represent the spatial 
coordinates of the objects. An instance M of the above schema contains 
a finite number of tuples of the form <Oid, t, x,y> that represent the 
position (x,y) of the object Oid at instant t, for the trajectories in T. � 

In practice, the MOFTs can contain huge amounts of data. For instance, 
suppose a GPS takes observations of daily movements of one thousand 
people, every ten seconds, during one month. This gives a MOFT of 
1000 360 24 30=259,200,000 records. In this scenario, querying 
trajectory data may become extremely expensive. Note that a MOFT 
only provides the position of objects at a given instant. Sometimes we 
are not interested in such level of detail, but we look for more 
aggregated information instead. For example, we may want to know 
how many people go from a hotel to a museum on weekdays. Or, we 
can even want to perform data mining tasks like inferring trajectory 
patterns that are hidden in the MOFT. These tasks require semantic 
information, not present in the MOFT. In the best case, obtaining this 
information from that table will be expensive, because it would imply a 
join between this table and the spatial data. 
As we commented above, the notion of stops and moves was recently 
introduced. Intuitively, if a moving object spends a sufficient amount 
of time in a certain geographic place (which we denote a place of 
interest of an application, PoI for short), this place is considered a stop 
of the object’s trajectory. In-between stops, a trajectory has moves. 
Gómez, Kuijpers, & Vaisman (2008b) present an in-depth study on 
how moving object data analysis can benefit from replacing raw 
trajectory data by a sequence of stops and moves. The authors propose 
to use the notion of stops and moves in order to obtain a concise 
MOFT, that can represent the trajectory in terms of places of interest, 
characterized as stops. This table cannot replace the whole information 
provided by the MOFT, but allows to quickly obtain information of 
interest without accessing the complete data set. In this sense, this 
concise MOFT, which we will denote SM-MOFT, behaves like a 
summarized materialized view of the MOFT. The SM-MOFT will 
contain the object identifier, the identifier of the geometries 
representing the Stops, and the interval [ts,tf] of the stop duration. 
Obviously, we do not need to store the information about the moves, 
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which remains implicit, because we know that between two stops there 
could only be a move. Definition 2  formalizes the above. 
 
Definition 2 (SM-MOFT) Let the set  ,  

 be the PoIs of an application, and let M be a 

MOFT. The SM-MOFT Msm of M with respect to PA consists of the 
tuples (Oid,gid,ts,tf ) such that (a) Oid is the identifier of a trajectory in 
M; (b) gid is the identifier of the geometry of a PoI  of 
PA,  such that the trajectory with identifier Oid in M has a stop in this 
PoI during the time interval [ts,tf]. This interval is called the stop 
interval of this stop.  � 
 
The table in Figure 7 (right) shows the SM-MOFT for our example of 
the beginning of this section.    
 

 
 
Figure 7. Three trajectories (left), the MOFT (center), and the SM-
MOFT  (right) 

Spatio-Temporal Aggregation in Piet 
The approach for spatio-temporal aggregation in Piet, differs from 
other proposalswe discussed in this paper. Gómez et al. (2008b) define 
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a query language, denoted RE-SPaM, based on regular expressions, 
and aimed at obtaining sequential patterns in trajectory databases. 
Aggregation is performed on top of this language, applying aggregate 
operators to the sequences that are in the query result. Association rule 
analysis is also supported by this approach. Four key features 
characterize RE-SPaM: 

1. Items are not only composed of identifiers, but are also complex 
objects, composed of attributes that can be organized in 
hierarchies. This allows adding OLAP capabilities to the 
language in a very natural way. 

2. The support of rollup functions allows performing mining at 
different levels of aggregation. Thus, complex sequential patterns 
can be found, at different granularity levels. 

3. It can be proved that RE-SPaM is actually a subset of the first-
order language introduced in Section “Geometric Aggregation” 
extended to support moving objects. We denoted this language 
Lmo.  

4. As a consequence of the above, not only semantic trajectories are 
supported, but also, if necessary, one can go back to the base 
data, in order to support any kind of queries, for instance, most 
of the ten queries in the benchmark proposed by Theodoridis 
(2003). In fact, aggregation is not considered in such benchmark.  

 
We do not give the formal definition of the language, but we give the 
idea through a couple of examples. 

We begin with a query not including aggregation, using only 
semantic trajectories (i.e., the SM-MOFT): “Trajectories going from a 
hotel to a tourist attraction, stopping at the latter, and ending at a hotel 
(maybe it had stopped at several other places)”. The query simply reads 
in RE-SPaM:  

H.T.? .H. 
 

Adding conditions over the labels of the elements in the language, like 
in: “Trajectories going from the Eiffel tower to the Hilton hotel”, we 
would have:  

 
T[name=“Eiffel”].H[name=“Hilton”]. 
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The conditions could be extended with functions (e.g., rollup functions, 
topological functions), and variables. Basically, the language is defined 
as follows. 
Definition 3 (R.E. for Stops and Moves)  A regular expression on 
stops and moves, denoted RE-SPaM is an expression generated by the 
grammar  
 E  dim|dim[cond]|(E)*|(E)+|E.E| |?   
 
where dim D (a set of dimension names in the OLAP part),  is the 
symbol representing the empty expression, “.” means concatenation, 
and cond represents a condition that can be expressed in Lmo. The term 
“? ” is a wildcard meaning “any sequence of any number of dim”. � 
 
The semantics of the language is the following: for each trajectory T in 
an SM-MOFT such that there is a sub-trajectory of T that matches the 
expression, the query returns the Oid of T. Aggregate functions can be 
applied over this result. An example including aggregation is the query: 
“Total number of trajectories from a Hilton hotel to a tourist 
attraction, stopping at a museum,” which reads in RE-SPaM: 
     
  COUNT(H[name=“Hilton"].? .M.? .T)     

 
As another example, including a rollup function, the query “Total 
number of trajectories that went from a Hilton hotel to the Louvre, in 
the morning” is expressed in RE-SPaM: 
 

 
 
In these queries, the conditions are evaluated over the current nodes 
(the node the parser is currently evaluating). Also, ts is a special 
variable representing the starting point of the time interval of the node 
of the automaton -see (Gómez, Kuijpers, & Vaisman, 2008b) for 
details), that is being visited when evaluating the expression. The next 
query illustrates the full power of the language, since it includes 
geometric and temporal conditions that show how all elements in the 
model interact. Note that in the query, the SM-MOFT is not enough, 
and we need to go to the geometry. However, for many useful queries 
and patterns, much simpler expressions will suffice. The query is: 
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‘‘Total number of trajectories going from a tourist attraction to a 
museum in the 19th district of Paris in the morning,” and in RE-SPaM 
reads: 

 
 
Let us explain this expression. The function , maps 
the id of the PoI (i.e., a museum) in the extension of the current node 
(p), to the polygon representing it in the geographic part (gid). The 
rollup    identifies the x,y coordinates corresponding 
to gid. The function   has the meaning already 
explained, i.e., it maps a district identifier d in the Distr dimension to a 
polygon identifier in layer Ld. The equality  checks 
that the point of the trajectory belongs to the 19th district. M is the 
MOFT containing the trajectory samples. 

CONCLUSION: DISCUSSING THE PROPOSALS 
 

We will focus on comparing the two proposals (introduced in the 
context of the GeoPKDD project) that, in our opinion, more 
comprehensively address the issue of spatio-temporal OLAP: 
Hermes/TDW, and Piet. The other proposals discussed in sections 
“Spatial Data Warehousing and OLAP” and “Spatio-Temporal Data 
Warehousing, OLAP and Mining” address different parts of the 
problem, but no spatio-temporal OLAP as a whole. We show below 
that, even though there exists some degree of overlapping, both 
approaches tackle different parts of the SOLAP problem. We remark 
that the analysis will be performed in terms of the capabilities to fulfill 
SOLAP requirements. 

 
Hermes does not specifically address SOLAP support. It is left open 
(although not explicitly stated) as a possible application of the general 
framework, but no formal model supports spatial data aggregation, 
because Hermes has not been designed as a model for spatio-temporal 
decision support. On the other hand, Piet focuses on GIS-OLAP 
integration, and is oriented specifically toward aggregate queries and 
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spatial decision-support, although, as showed, standard spatial queries 
are also supported.   
 
Integrating geographic data and warehouse data is not built into the 
Hermes model, while Piet handles this integration through the “!” 
function. As of the moment when this paper is being written, this 
binding must be performed “manually”, and a tool for automatically 
matching geometric elements in the GIS layers to non-spatial objects in 
the warehouse, is being implemented for Piet. On the Hermes side, 
integration of an external warehouse would require defining, in an ad-
hoc fashion, how geographic objects will be mapped to warehouse 
objects. 
 
Being conceived as a SOLAP system, the Piet formal data model also 
integrates naturally into the SOLAP framework the problem of 
modeling and analyzing trajectory data, either using the whole 
trajectory data (i.e., the MOFT), or the semantic trajectory represented 
via the SM-MOFT.  
 
Probably the strongest feature of the Hermes/TDW proposal is the 
analysis and implementations of the ETL process for trajectory data 
analysis. On the other hand, Piet does not have similar automatic data 
loading machinery, and assumes that data has already been loaded into 
a trajectory file.  
 
In the TDW approach, only aggregate measures are loaded into a fact 
table, and dimensions conform cells in a three-dimensional space 
(x,y,t). The main achievement, in this sense, is the treatment of double 
counting for some of the measures. Trajectory data is stored in the 
moving object database (MOD), and it is used to extract higher level 
knowledge that may also be used to feed the TDW. Therefore, the 
TDW could be considered an application, based on on the traditional 
star schema, developed over the underlying architecture.  Instead, in the 
Piet/RE-SPaM  (Piet’s regular query language for trajectories) 
approach, the MOFT and SM-MOFT do not store aggregated 
measures (actually, the “facts” here are represented by the existence of 
the trajectory in the database, in a sense, a kind of boolean measure), 
but just the base trajectories (or the “semantic” trajectories, in the SM-
MOFT). In fact, the MOFT is, basically, the RELTrajectories table in 
the TDW approach, which suggests that both approaches may 
complement each other in this sense.  Aggregation over the ‘cells’ 
hierarchy could be supported by RE-SPaM, although the language is 
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mainly oriented to trajectory pattern mining. Further, aggregation is 
performed over trajectories that satisfy a certain pattern - see (Gómez, 
Kuijpers, & Vaisman, 2008a) for details on the different aggregate 
operators and their arguments. In summary, implementing aggregation 
over cells in Piet, in the way proposed in GeoPKDD would not be 
trivial.  
 
The Hermes-MDC framework supports moving objects that can change 
shape or position over time, while Piet assumes that the regions and 
geometric objects, in general, are static, and that traceable objects 
(e.g., representing pedestrians, buses, cars) move through the 
geographic space. In other words, Piet does not provide temporal 
support for the GIS part of the model, only for the moving objects 
whose trajectories are being analyzed. 
 
Finally, all Piet software components are open source: the database, 
postgres, and its GIS extension posGIS (http://postgis.refractions.net), 
the Mondrian OLAP server (http://www.mondrian.sourceforge.net) , 
and Java. On the other hand, Hermes is built as an extension of Oracle 
10g.  
 
Table 1 summarizes the similarities and differences between Hermes, 
the TDW, and Piet/ RE-SPaM.  
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 Hermes Trajectory 
DW 

Piet RE-SPaM 

GIS-OLAP 
integration 

No Through 
Hermes-MDC  

Yes Yes 

SOLAP Formal 
model 

No N/A Yes N/A 

Fact table N/A (can 
be defined 
ad-hoc) 

Pre-
aggregated 
measures  

External, 
defined in the 
OLAP part  

MOFT,SM MOFT 
(no pre-
aggregation) 

Query 
Language  

PL-SQL PL-SQL Piet-QL RE-SPaM 

Support for 
spatial 
aggregation  

Ad-hoc Yes Yes Yes 

Support  for 
querying an 
external DW  

Ad-hoc Ad-hoc Built-in  Built-in  

Spatial 
Queries 

Point,Rang
e, distance, 
nearest-
neighbor 

Point,Range, 
distance, 
nearest-
neighbor 

Point,Range, 
distance, 
nearest-
neighbor 

Point,Range, 
distance, 
nearest-
neighbor  

Mining 
capabilities 

No Through 
external 
functionality 

No Yes 

Roll-up and 
drill-down 
over spatial 
objects 

No Yes Through Piet-
QL 

No 

Support of 
changing  
objects 

Yes Through 
Hermes-MDC 

No No 

Temporal 
support 

Yes Through 
Hermes-MDC 

No Only for moving 
points 

ETL Support 
and tools  

N/A Yes No No 

Semantic 
trajectory 
support 

N/A Through 
external 
functionality 

N/A Built-in 

Open Source 
Architecture 

No No Yes Yes 

Needs non-
standard data 
libraries  for 
querying? 

Yes Yes No No 

Table 1. Comparing Hermes, TDW, Piet and RE-SpaM.  
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