

A Survey on Spatio-Temporal Data Warehousing

Leticia Gómez

Instituto Tecnológico de Buenos
Aires

Bart Kuijpers, Bart Moelans,
Alejandro Vaisman

University of Hasselt and
Transnational University of

Limburg, Belgium

Abstract

Geographic Information Systems (GIS) have been
extensively used in various application domains, ranging
from economical, ecological and demographic analysis,
to city and route planning. Nowadays, organizations need
sophisticated GIS-based Decision Support System (DSS)
to analyze their data with respect to geographic
information, represented not only as attribute data, but
also in maps. Thus, vendors are increasingly integrating
their products, leading to the concept of SOLAP (Spatial
OLAP). Also, in the last years, and motivated by the
explosive growth in the use of PDA devices, the field of
moving object data has been receiving attention from the
GIS community. However, not much has been done in
providing moving object databases with OLAP
functionality. In the first part of this paper we survey the
SOLAP literature. We then move to Spatio-Temporal
OLAP, in particular addressing the problem of trajectory
analysis. We finally provide an in-depth comparative
analysis between two proposals introduced in the context
of the GeoPKDD EU project: the Hermes-MDC system,
and Piet, a proposal for SOLAP and moving objects,
developed at the University of Buenos Aires, Argentina.

Keywords: GIS, OLAP, Data Warehousing, Moving
Objects, Trajectories, Aggregation

1

INTRODUCTION

Geographic Information Systems (GIS) have been extensively used in
various application domains, ranging from economical, ecological and
demographic analysis, to city and route planning (Rigaux, Scholl, &
Voisard, 2001; Worboys, 1995). Spatial information in a GIS is
typically stored in different so-called thematic layers (also called
themes). Information in themes can be stored in data structures
according to different data models, the most usual ones being the raster
model and the vector model. In a thematic layer, spatial data is
annotated with classical relational attribute information, of (in general)
numeric or string type. While spatial data is stored in data structures
suitable for these kinds of data, associated attributes are usually stored
in conventional relational databases. Spatial data in the different
thematic layers of a GIS system can be mapped univocally to each
other using a common frame of reference, like a coordinate system.
These layers can be overlapped or overlayed to obtain an integrated
spatial view.
On the other hand, OLAP (On Line Analytical Processing) (Kimball,
1996; Kimball & Ross, 2002) comprises a set of tools and algorithms
that allow efficiently querying multidimensional databases, containing
large amounts of data, usually called Data Warehouses. In OLAP, data
is organized as a set of dimensions and fact tables. In the
multidimensional model, data can be perceived as a data cube, where
each cell contains a measure or set of (probably aggregated) measures
of interest. As we discuss later, OLAP dimensions are further
organized in hierarchies that favor the data aggregation
process (Cabibbo & Torlone, 1997). Several techniques and algorithms
have been developed for query processing, most of them involving
some kind of aggregate precomputation (Harinarayan, Rajaraman, &
Ullman, 1996).

The need for OLAP in GIS
Different data models have been proposed for representing objects in a
GIS. ESRI (http://www.esri.com) first introduced the Coverage data
model to bind geometric objects to non-spatial attributes that describe
them. Later, they extended this model with object-oriented support, in a
way that behavior can be defined for geographic features (Zeiler,
1999). The idea of the Coverage data model is also supported by the

2

Reference Model proposed by the Open Geospatial Consortium
(http://www.opengeospatial.org). Thus, in spite of the model of choice,
there is always the underlying idea of binding geometric objects to
objects or attributes stored in (mostly) object-relational
databases (Stonebraker & Moore, 1996). In addition, query tools in
commercial GIS allow users to overlap several thematic layers in order
to locate objects of interest within an area, like schools or fire stations.
For this, they use indexing structures based on R-trees (Gutman, 1984).
GIS query support sometimes includes aggregation of geographic
measures, for example, distances or areas (e.g., representing different
geological zones). However, these aggregations are not the only ones
that are required, as we discuss below.
Nowadays, organizations need sophisticated GIS-based Decision
Support System (DSS) to analyze their data with respect to geographic
information, represented not only as attribute data, but also in maps,
probably in different thematic layers. In this sense, OLAP and GIS
vendors are increasingly integrating their products (see, for instance,
Microstrategy and MapInfo integration in
http://www.microstrategy.com/, and http://www.mapinfo.com/). In this
sense, aggregate queries are central to DSSs. Classical aggregate OLAP
queries (like “total sales of cars in California”), and aggregation
combined with complex queries involving geometric components
(“total sales in all villages crossed by the Mississippi river and within a
radius of 100 km around New Orleans”) must be efficiently supported.
Moreover, navigation of the results using typical OLAP operations like
roll-up or drill-down is also required. These operations are not
supported by commercial GIS in a straightforward way. One of the
reasons is that the GIS data models discussed above were developed
with “transactional” queries in mind. Thus, the databases storing non-
spatial attributes or objects are designed to support those (non-
aggregate) kinds of queries. Decision support systems need a different
data model, where non-spatial data, probably consolidated from
different sectors in an organization, is stored in a data warehouse. Here,
numerical data are stored in fact tables built along several dimensions.
For instance, if we are interested in the sales of certain products in
stores in a given region, we may consider the sales amounts in a fact
table over the three dimensions Store, Time and Product. In order to
guarantee summarizability (Lenz & Shoshani, 1997), dimensions are
organized into aggregation hierarchies. For example, stores can
aggregate over cities which in turn can aggregate into regions and
countries. Each of these aggregation levels can also hold descriptive
attributes like city population, the area of a region, etc. To fulfill the

3

requirements of integrated GIS-DSS, warehouse data must be linked to
geographic data. For instance, a polygon representing a region must be
associated to the region identifier in the warehouse. Besides, system
integration in commercial GIS is not an easy task. In the current
commercial applications, the GIS and OLAP worlds are integrated in
an ad-hoc fashion, probably in a different way (and using different data
models) each time an implementation is required, even when a data
warehouse is available for non-spatial data.

An Introductory Example. We present now a real-world example for
illustrating some issues in the spatial warehousing problematic. We
selected four layers with geographic and geological features obtained
from the National Atlas Website (http://www.nationalatlas.gov). These
layers contain the following information: states, cities, and rivers in
North America, and volcanoes in the northern hemisphere (published
by the Global Volcanism Program - GVP). Figure 1 shows a detail of
the layers containing cities and rivers in North America, displayed
using the graphic interface of the Piet implementation we discuss later
in the paper. Note the density of the points representing cities
(particularly in the eastern region). Rivers are represented as polylines.
Figure 2 shows a portion of two overlayed layers containing states
(represented as polygons) and volcanoes in the northern hemisphere.
There is also non-spatial information stored in a conventional data
warehouse. In this data warehouse, dimension tables contain customer,
stores and product information, and a fact table contains stores sales
across time. Also, numerical and textual information on the geographic
components exist (e.g., population, area), stored as usual as attributes
of the GIS layers.
In the scenario above, conventional GIS and organizational data can be
integrated for decision support analysis. Sales information could be
analyzed in the light of geographical features, conveniently displayed
in maps. This analysis could benefit from the integration of both worlds
in a single framework. Even though this integration could be possible
with existing technologies, ad-hoc solutions are expensive because,
besides requiring lots of complex coding, they are hardly portable. To
make things more difficult, ad-hoc solutions require data exchange
between GIS and OLAP applications to be performed. This implies that
the output of a GIS query must be probably exported as members in
dimensions of a data cube, and merged for further analysis. For
example, suppose that a business analyst is interested in studying the
sales of nautical goods in stores located in cities crossed by rivers. She
would first query the GIS, to obtain the cities of interest. She probably

4

has stored sales in a data cube containing a dimension Store or
Geography with city as a dimension level. She would need to
“manually” select the cities of interest (i.e., the ones returned by the
GIS query) in the cube, to be able to go on with the analysis (in the best
case, an ad-hoc customized middleware could help her). Of course, she
must repeat this for each query involving a (geographic) dimension in
the data cube.

Figure 1. Two overlayed layers containing cities and rivers in North
America.

On the contrary, GIS/Data warehousing integration can provide a more
natural solution.
The second part of this survey is devoted to spatio-temporal
datawarehousing and OLAP. Moving objects databases (MOD) have
been receiving increasing attention from the database community in
recent years, mainly due to the wide variety of applications that
technology allows nowadays. Trajectories of moving objects like cars
or pedestrians, can be reconstructed by means of samples describing
the locations of these objects at certain points in time. Although there

5

Figure 2. Two overlayed layers containing states in North America and
volcanoes in the northern hemisphere.

exist many proposals for modeling and querying moving objects, only a
small part of them address the problem of aggregation of moving
objects data in a GIS (Geographic Information Systems) scenario.
Many interesting applications arise, involving moving objects
aggregation, mainly regarding traffic analysis, truck fleet behavior
analysis, commuter traffic in a city, passenger traffic in an airport, or
shopping behavior in a mall. Building trajectory data warehouses that
can integrate with a GIS is an open problem that is starting to attract
database researchers. Finally, the MOD setting is appropriate for data
mining tasks, and we also comment on this in the paper.

In this paper, we first provide a brief background on GIS, data
warehousing and OLAP, and a review of the state-of-the-art in spatial
OLAP. After this, we move on to study spatio-temporal data
warehousing, OLAP and mining. We then provide a detailed analysis
of the Piet framework, aimed at integrating GIS, OLAP and moving
object data, and conclude with a comparison between this proposal, and
the Hermes data cartrridge and trajectory data warehouse developed in
the context of the GeoPKDD project (Information about the GoePKDD
project can be found at http://www.geopkdd.eu).

6

A SHORT BACKGROUND

GIS
In general, information in a GIS application is divided over several
thematic layers. The information in each layer consists of purely spatial
data on the one hand, that is combined with classical alpha-numeric
attribute data on the other hand (usually stored in a relational database).
Two main data models are used for the representation of the spatial part
of the information within one layer, the vector model and the raster
model. The choice of model typically depends on the data source from
which the information is imported into the GIS.

The Vector Model. The vector model is used the most in current
GIS (Kuper & Scholl, 2000). In the vector model, infinite sets of points
in space are represented as finite geometric structures, or geometries,
like, for example, points, polylines and polygons. More concretely,
vector data within a layer consists in a finite number of tuples of the
form (geometry, attributes) where a geometry can be a point, a polyline
or a polygon. There are several possible data structures to actually store
these geometries (Worboys, 1995).

The Raster Model. In the raster model, the space is sampled into pixels
or cells, each one having an associated attribute or set of attributes.
Usually, these cells form a uniform grid in the plane. For each cell or
pixel, the sample value of some function is computed and associated to
the cell as an attribute value, e.g., a numeric value or a color. In
general, information represented in the raster model is organized into
zones, where the cells of a zone have the same value for some
attribute(s). The raster model has very efficient indexing structures and
it is very well-suited to model continuous change but its disadvantages
include its size and the cost of computing the zones.
Spatial information in the different thematic layers in a GIS is often
joined or overlayed. Queries requiring map overlay are more difficult
to compute in the vector model than in the raster model. On the other
hand, the vector model offers a concise representation of the data,
independent on the resolution. For a uniform treatment of different
layers given in the vector or the raster model, in this paper we treat the
raster model as a special case of the vector model. Indeed,
conceptually, each cell is, and each pixel can be regarded as, a small
polygon; also, the attribute value associated to the cell or pixel can be
regarded as an attribute in the vector model.

7

Data Warehousing and OLAP
The importance of data analysis has increased significantly in recent
years as organizations in all sectors are required to improve their
decision-making processes in order to maintain their competitive
advantage. We said before that OLAP (On Line Analytical
Processing) (Kimball, 1996; Kimball & Ross, 2002) comprises a set of
tools and algorithms that allow efficiently querying databases that
contain large amounts of data. These databases, usually designed for
read-only access (in general, updating is performed off-line), are
denoted data warehouses. Data warehouses are exploited in different
ways. OLAP is one of them. OLAP systems are based on a
multidimensional model, which allows a better understanding of data
for analysis purposes and provides better performance for complex
analytical queries. The multidimensional model allows viewing data in
an n-dimensional space, usually called a data cube (Kimball & Ross,
2002). In this cube, each cell contains a measure or set of (probably
aggregated) measures of interest. This factual data can be analyzed
along dimensions of interest, usually organized in hierarchies (Cabibbo
& Torlone, 1997). Three typical ways of OLAP tools implementation
exist: MOLAP (standing for multidimensional OLAP), where data is
stored in proprietary multidimensional structures, ROLAP (relational
OLAP), where data is stored in (object) relational databases, and
HOLAP (standing for hybrid OLAP, which provides both solutions. In
a ROLAP environment, data is organized as a set of dimension tables
and fact tables, and we assume this organization in the remainder of the
paper.
There are a number of OLAP operations that allow exploiting the
dimensions and their hierarchies, thus providing an interactive data
analysis environment. Warehouse databases are optimized for OLAP
operations which, typically, imply data aggregation or de-aggregation
along a dimension, called roll-up and drill-down, respectively. Other
operations involve selecting parts of a cube (slice and dice) and re-
orienting the multidimensional view of data (pivoting). In addition to
the basic operations described above, OLAP tools provide a great
variety of mathematical, statistical, and financial operators for
computing ratios, variances, ranks,etc.
It is an accepted fact that data warehouse (conceptual) design is still an
open issue in the field (Rizzi & Golfarelli, 2000). Most of the data
models either provide a graphical representation based on the Entity-
Relationship (E/R) model or UML notations, or they just provide some
formal definitions without user-oriented graphical support. Recently,

8

Malinowsky and Zimányi (2006) propose the MultiDim model. This
model is based on the E/R model and provides an intuitive graphical
notation. Also recently, Vaisman (Vaisman, 2006a, 2006b) introduced
a methodology for requirement elicitation in Decision Support
Systems, arguing that methodologies used for OLTP systems are not
appropriate for OLAP systems.

Temporal Data Warehouses
The relational data model as proposed by Codd (1970), is not well-
suited for handling spatial and/or temporal data. Data evolution over
time must be treated in this model, in the same way as ordinary data.
This is not enough for applications that require past, present, and/or
future data values to be dealt with by the database. In real life such
applications abound. Therefore, in the last decades, much research has
been done in the field of temporal databases. Snodgrass (1995)
describes the design of the TSQL2 Temporal Query Language, an
upward compatible extension of SQL-92. The book, written as a result
of a Dagstuhl seminar organized in June 1997 by Etzion, Jajodia, and
Sripada (1998), contains comprehensive bibliography, glossaries for
both temporal database and time granularity concepts, and summaries
of work around 1998. The same author (Snodgrass, 1999), in other
work, discusses practical research issues on temporal database design
and implementation.
Regarding temporal data warehousing and OLAP, Mendelzon and
Vaisman (2000, 2003) proposed a model, denoted TOLAP, and
developed a prototype and a datalog-like query language, based on a
(temporal) star schema. Vaisman, Izquierdo, and Ktenas (2006) also
present a Web-based implementation of this model, along with a query
language, called TOLAP-QL. Eder, Koncilia, and Morzy (2002) also
propose a data model for temporal OLAP supporting structural
changes. Although these efforts, little attention has been devoted to the
problem of conceptual and logical modeling for temporal data
warehouses.

SPATIAL DATA WAREHOUSING AND OLAP

Spatial database systems have been studied for a long time (Buchmann,
Günther, Smith, & Wang, 1990; Paredaens, Van Den Bussche, &
Gucht, 1994). Rigaux et al. (2001) survey various techniques, such as
spatial data models, algorithms, and indexing methods, developed to
address specific features of spatial data that are not adequately handled
by mainstream DBMS technology.

9

Although some authors have pointed out the benefits of combining GIS
and OLAP, not much work has been done in this field. Vega López,
Snodgrass, and Moon (2005) present a comprehensive survey on
spatiotemporal aggregation that includes a section on spatial
aggregation. Also, Bédard, Rivest, and Proulx (2007) present a review
of the efforts for integrating OLAP and GIS. As we explain later,
efficient data aggregation is crucial for a system with GIS-OLAP
capabilities.

Conceptual Modeling and SOLAP
Rivest, Bédard, and Marchand (2001) introduced the concept of
SOLAP (standing for Spatial OLAP), a paradigm aimed at being able
to explore spatial data by drilling on maps, in a way analogous to what
is performed in OLAP with tables and charts. They describe the
desirable features and operators a SOLAP system should have.
Although they do not present a formal model for this, SOLAP concepts
and operators have been implemented in a commercial tool called
JMAP, developed by the Centre for Research in Geomatics and
KHEOPS, see http://www.kheops-tech.com/en/jmap/solap.jsp.
Stefanovic, Han, and Koperski (2000) and Bédard, Merret, and Han
(2001), classify spatial dimension hierarchies according to their spatial
references in: (a) non-geometric; (b) geometric to non-geometric; and
(c) fully geometric. Dimensions of type (a) can be treated as any
descriptive dimension (Rivest et al., 2001). In dimensions of types (b)
and (c), a geometry is associated to members of the hierarchies.
Malinowski and Zimányi (2004) extend this classification to consider
that even in the absence of several related spatial levels, a dimension
can be considered spatial. Here, a dimension level is spatial if it is
represented as a spatial data type (e.g., point, region), allowing them to
link spatial levels through topological relationships (e.g., contains,
overlaps). Thus, a spatial dimension is a dimension that contains at
least one spatial hierarchy. A critical point in spatial dimension
modeling is the problem of multiple-dependencies, meaning that an
element in one level can be related to more than one element in a level
above it in the hierarchy. Jensen, Kligys, Pedersen, and Timko (2004)
address this issue, and propose a multidimensional data model for
mobile services, i.e., services that deliver content to users, depending
on their location. This model supports different kinds of dimension
hierarchies, most remarkably multiple hierarchies in the same
dimension, i.e., multiple aggregation paths. Full and partial
containment hierarchies are also supported. However, the model does
not consider the geometry, limiting the set of queries that can be

10

addressed. This means that spatial dimensions are standard dimensions
referring to some geographical element (like cities or roads).
Malinowski and Zimányi (2006) also propose a model supporting
multiple aggregation paths.
Pourabbas (2003) introduces a conceptual model that uses binding
attributes to bridge the gap between spatial databases and a data cube.
The approach relies on the assumption that all the cells in the cube
contain a value, which is not the usual case in practice, as the author
expresses. Also, the approach requires modifying the structure of the
spatial data to support the model. No implementation is presented.
Shekhar, Lu, Tan, Chawla, & Vatsavai (2001) introduced MapCube, a
visualization tool for spatial data cubes. MapCube is an operator that,
given a so-called base map, cartographic preferences and an
aggregation hierarchy, produces an album of maps that can be
navigated via roll-up and drill-down operations.

Spatial Measures. Measures are characterized in two ways in the
literature, namely: (a) measures representing a geometry, which can be
aggregated along the dimensions; (b) a numerical value, using a
topological or metric operator. Most proposals support option (a),
either as a set of coordinates (Bédard et al., 2001; Rivest et al., 2001;
Malinowski & Zimányi, 2004; Bimonte, Tchounikine, & Miquel,
2005), or a set of pointers to geometric objects (Stefanovic et al.,
2000). Bimonte et al. (Bimonte et al., 2005) define measures as
complex objects (a measure is thus an object containing several
attributes). Malinowski and Zimányi (2004) follow a similar approach,
but defining measures as attributes of an n-ary fact relationship
between dimensions.
Damiani and Spaccapietra (2006) propose MuSD, a model allowing
defining spatial measures at different granularities. Here, a spatial
measure can represent the location of a fact at multiple levels of
(spatial) granularity. Also, an algebra of SOLAP operators is proposed.

Spatial Aggregation
In light of the discussion above, it should be clear that aggregation is a
crucial issue in spatial OLAP. Moreover, there is not yet a consensus
about a complete set of aggregate operators for spatial OLAP. We now
discuss the classic approaches to spatial aggregation.
Han et al. (1998) use OLAP techniques for materializing selected
spatial objects, and proposed a so-called Spatial Data Cube, and the set
of operations that can be performed on this data cube. The model only
supports aggregation of spatial objects.

11

Pedersen and Tryfona (2001) propose the pre-aggregation of spatial
facts. First, they pre-process these facts, computing their disjoint parts
in order to be able to aggregate them later. This pre-aggregation works
if the spatial properties of the objects are distributive over some
aggregate function. Again, the spatial measures are geometric objects.
Given that this proposal ignores the geometries, queries like “total
population of cities crossed by a river” are not supported. The paper
does not address forms other than polygons, although the authors claim
that other more complex forms are supported by the method, and the
authors do not report experimental results.
With a different approach, Rao, Zhang, Yu, Li, and Chen (2003), and
Zhang, Li, Rao, Yu, Chen, and Liu (2003) combine OLAP and GIS for
querying so-called spatial data warehouses, using R-trees for accessing
data in fact tables. The data warehouse is then exploited in the usual
OLAP way. Thus, they take advantage of OLAP hierarchies for
locating information in the R-tree which indexes the fact table.
Although the measures here are not only spatial objects, the proposal
also ignores the geometric part of the model, limiting the scope of the
queries that can be addressed. It is assumed that some fact table,
containing the identifiers of spatial objects exists. Finally, these objects
happen to be points, which is quite unrealistic in a GIS environment,
where different types of objects appear in the different layers.
Some interesting techniques have been recently introduced to address
the data aggregation problem. These techniques are based on the
combined use of (R-tree-based) indexes, materialization (or pre-
aggregation) of aggregate measures, and computational geometry
algorithms.
Papadias, Tao, Kalnis, and Zhang (2002) introduce the Aggregation R-
tree (aR-tree), combining indexing with pre-aggregation. The aR-tree is
an R-tree that annotates each MBR (Minimal Bounding Rectangle)
with the value of the aggregate function for all the objects that are
enclosed by it. They extend this proposal in order to handle historic
information (see the section on moving object data below), denoting
this extension aRB-tree (Papadias, Tao, Zhang, Mamoulis, Shen, and &
Sun, 2002). The approach basically consists in two kinds of indexes: a
host index, which is an R-tree with the summarized information, and a
B-tree containing time-varying aggregate data. In the most general
case, each region has a B-tree associated, with the historical
information of the measures of interest in the region. This is a very
efficient solution for some kinds of queries, for example, window
aggregate queries (i.e., for the computation of the aggregate measure of
the regions which intersect a spatio-temporal window). In addition, the

12

method is very effective when a query is posed over a query region
whose intersection with the objects in a map must be computed on-the-
fly, and these objects are totally enclosed in the query region. However,
problems may appear when leaf entries partially overlap the query
window. In this case, the result must be estimated, or the actual results
computed using the base tables. In fact, Tao, Kollios, Considine, Li,
and Papadias (2004), show that the aRB-tree can suffer from the
distinct counting problem, if the object remains in the same region for
several timestamps.

SPATIO-TEMPORAL DATA WAREHOUSING, OLAP AND
MINING

The field of moving objects databases has been extensively studied in
the last ten years, mainly regarding data modeling an indexing. Güting
and Schneider (2005) provide a good reference to this large corpus of
work. Moving objects, carrying location-aware devices, produce
trajectory data in the form of a sample of (Oid,x,y,t)-tuples, that contain
object identifier and time-space information. In this survey, we will
focus on the problem of building trajectory data warehouses and
exploiting them through OLAP and data mining techniques.

Modeling
Generally speaking, in order to support trajectory data a spatio-
temporal data cube should allow analysis along (a) temporal
dimensions; (b) spatial dimensions at different levels of granularity
(point, cell, road); (c) thematic dimensions, containing, for instance,
demographic data. In this sense, hierarchies must take into account the
fact that an element may rollup to more than one in an upper level. For
instance, a road can probably cross more that one cell, thus, there is no
function from a level cell to a level road. It is worth noticing that some
proposals deal with this problem defining complex relationships (e.g.,
containment) in the dimension hierarchies (Jensen et al., 2004), which
in general, lead to approximations. The Piet framework, discussed
below, defines different GIS dimensions for different kinds of
geometries. In the former example, the query language would handle
the problem of finding out the cells that intersect the road.
 Wolfson, Sistla, Xu, and Chamberlain (1999) define a set of
capabilities that a moving object database must have, and introduce the
DOMINO system, that develops those features on top of existing
database management systems (DBMS). Hornsby and
Egenhofer (2002) introduce a framework for modeling moving objects,

13

which supports viewing objects at different granularities, depending on
the sampling time interval. The basic modeling element they consider
is a geospatial lifeline, which is composed of triples of the form
<Id,location,time>, where Id is the identifier of the object, location is
given by x-y coordinates, and time is the timestamp of the observation.
The possible positions of an object between two observations is
estimated to be within two inverted half-cones that conform a lifeline
bead, whose projection over the x-y plane is an ellipse.
Particular interest has received the topic of moving objects on road
networks. Van de Weghe et al. propose a qualitative trajectory calculus
for objects in a GIS (Weghe, Cohn, Tré, & Maeyer, 2005), based on the
assumption that in a GIS scenario, qualitative information is necessary
(and, in general, more useful than quantitative information). For mining
trajectories in road networks, Brakatsoulas, Pfoser, and Tryfona (2004)
propose to enrich trajectories of moving objects with information about
the relationships between trajectories (e.g., intersect, meets), and
between a trajectory and the GIS environment (stay within, bypass,
leave). They also proposed a mining language denoted SML (for
Spatial Mining Language). This language is oriented to traffic
networks, and it is not clear how it could be extended to other
scenarios. Moreover, all information on moving objects must be
processed (on the contrary, we use semantic information to reduce, if
possible, the amount of data to be considered).
Also in the framework of road traffic mining, Gonzalez, Han, Li,
Myslinska, and Sondag (2007) use a partitioning approach for
obtaining interesting driving and speed patterns from large sets of
traffic data. They compute frequent path-segments at the area level
with a support relative to the traffic in the area (i.e., a kind of
adaptative support), and propose an algorithm to automatically partition
a road network and build a hierarchy of areas.
The work of Lee, Han, and Whang (2007) is aimed at discovering
common sub-trajectories, using a partitioning strategy which divides a
trajectory into a set of line segments, and then groups similar line
segments together into a cluster.
Like in the case of spatial OLAP (and multidimensional databases, in
general), from the conceptual modeling point of view, there has not
been much interest from the database community. Malinowski and
Zimányi (2006) propose a model to provide a graphical representation,
based on the Entity/Relationship model, and on UML. To the best of
our knowledge, the Piet data model discussed in detail below, is the
first attempt to provide a formal framework for integrating spatio-
temporal data with OLAP and data warehousing.

14

Adding Semantic Information to Trajectory Data
Techniques that add semantic information to trajectory data have been
recently proposed. Mouza and Rigaux (2005) present a model where
trajectories are represented by a sequence of moves. They propose a
query language based on regular expressions, aimed at obtaining so-
called mobility patterns. Note that this language, as well as the
proposals commented above, does not relate trajectories with the GIS
environment, which limits the types of queries that can be addressed.
Along the same lines, Damiani, Macedo, Parent, Porto, and
Spaccapietra (2007) introduced the concept of stops and moves, in
order to enrich trajectories with semantically annotated data. Below, we
will give more details about the stops and moves paradigm.
Giannotti, Nanni, Pinelli, and Pedreschi (2007) studied trajectory
pattern mining, based on so-called Temporally Annotated Sequences
(TAS), an extension of sequential patterns, where a temporal
annotation between two nodes is defined. In this way, the sequence
<s1,2,s2> defines a pattern that starts at s1 and after two seconds
arrives at s2. In other words, a trajectory pattern is a set of trajectories
that visit the same sequence of places with similar travel times between
each of them. They also propose three different mining methods. They
also introduce the concept of Region of Interest (RoI). In the paper, the
authors focused on computing the RoIs dynamically from the
trajectories. Along similar lines, Gómez, Kuijpers, and Vaisman
(2008a,2008b) present a model and implementation where trajectories
are replaced by sequences of stops and moves, also following the ideas
of Alvares et al. (2007). This work differs from the one of Giannotti et
al. (2007) in several ways: first, the authors work with stops and moves
instead of pre-defined regions of interest. This allows identifying which
of the RoIs are really relevant to a trajectory. Second, the stops and
moves are used to “encode” or compress a trajectory, which, in many
practical situations turns out to be enough to identify interesting
sequences very efficiently. A third difference is that in this proposal,
the user defines the places of interest of an application in advance, and
then they compute the stops and moves to perform trajectory mining.
Finally, the approach of Gómez et al. (2007) allows integration
between trajectories and geographic data, an issue mentioned albeit not
addressed in (Giannotti et al., 2007).

Trajectory Similarity and Aggregation
The problem of trajectory similarity and aggregation in moving object
databases is a new topic in the spatio-temporal database literature.

15

Existing work focuses on the spatial notion of similarity, sometimes
borrowing from the time-series analysis field. This is the approach
followed by Pelekis, Kopanakis, Ntoutsi, Marketos, Andrienko, and
Theodoridis (2007), and Pelekis, Kopanakis, Ntoutsi, Marketos, and
Theodoridis (2007), who introduce a framework consisting of a set of
distance operators based on parameters of trajectories like speed and
direction, and propose distance operators based on this. Frentzos,
Gratsias, and Theodoridis (2007) propose an approximation method for
supporting the k-most-similar-trajectory search using R-tree structures.
Data aggregation is still quite an open field, either in GIS or in a
moving objects scenario. Meratnia and de By (2002) study trajectory
aggregation by identifying similar trajectories, merging them in a
single one, and dividing the area under study into homogeneous spatial
units. We commented above the work of Papadias et al (2002), about
indexing of historical aggregate information about moving objects.
Kuijpers and Vaisman (2007) presented a taxonomy of aggregate
queries on moving object data. The model and query language we
present here covers the different types of aggregation queries in this
taxonomy.

The Hermes System and the GeoPKDD Trajectory Data Warehouse
Among a limited number of proposals for trajectory data warehouses,
the work by Orlando, Orsini, Raffaetà, Roncato, and Silvestri (2007) is
worth an in-depth discussion. They build a trajectory data warehouse
aimed at providing the infrastructure needed to deliver advanced
reporting capabilities and facilitating the application of mining
algorithms on aggregate data, for the GeoPKDD project (see
http://www.geopkdd.eu). Since this project is based in the Hermes
architecture, we first give a brief overview of the Hermes system
(Pelekis, N., Theodoridis, Y., Vosinakis, S., and Panayiotopoulos, T.,
2006; Pelekis & Theodoridis, 2006).
The Hermes System for Location-Based Services. Hermes provides the
functionality needed for handling two-dimensional objects that change
location, shape and size, through three kinds of data types: (a) static
base data types (b) static temporal data types; (c) static spatial types;
(d) moving data types. Data of type (a) are the standard DBMS data
types (integer, real, etc.). Data of type (b) are based on the so-called
TAU temporal object model (Kakoudakis, 1996), and provide Hermes
with temporal object-relational capabilities, through a library denoted
TAU-TLL (Pelekis, 2002). The new temporal data types supported
(extending the ODMG data model) are Timepoint, Period, and

16

Temporal Element. The spatial data types (c) are provided by the
Oracle Spatial library. The object type defined in Oracle, and used by
Hermes, is called Sdo_Geometry. The Moving data type (d)
encapsulates semantics and functionality of different data types:
moving point, linestring, circle, rectangle, polygon, and moving
collection. Below these types, a class hierarchy is defined. The basic
type is moving point, defined as a sequence of different types of simple
functions. It is based on the sliced representation proposed by Güting,
Böhlen, Jensen, Lorentzos, Schneider, and M. & Vazirgiannis (2000).
Here, a temporal development of a moving object is decomposed in
slices such that, between each slice, a simple function is defined. The
idea is to decompose the definition of each moving type into several
definitions, one for each function. The composition of these sub-
definitions defines a moving type. This way, a unit_function models the
case where a user is located at a point (xi,yi) and moves, with initial
velocity v and acceleration a or a linear or circular arc route. A flag
indicates the type of movement. The point (xe,ye) is the end point of the
movement. The unit function along with the period object type,
conforms the moving point data type, which is the basis for the other
types. For instance, the type moving circle is formed by the function
unit_moving_circle plus the period data type. In turn, the former is
composed of three unit_moving_point objects. Details on these data
types can be found in (Pelekis & Theodoridis, 2006). The objects
belonging to the moving type are provided with a set of operations: (a)
topological and distance predicates, like within_distance; (b) temporal
functions, like add_unit (adds a new unit of movement), and at_instant
(returns the union of the projection of a moving object at a time
instant); (c) distance and direction operators (for instance, the distance
between two moving objects); (d) set relationships (like intersection).
Also, numeric operations on objects are supported, like area or length.
In consequence, it would be easy to compute, for instance, the area of
an object at a given time instant.
The Hermes architecture can be described as follows: the basic
components are the TAU-TLL library, the Oracle spatial cartridge and
the Hermes-MDC (Moving Data Cartridge), which includes the moving
data types. PL-SQL statements, which are compiled and stored in
binary form, use those cartridges and data types. Thus, the PL-SQL
statements are available for interacting with Oracle 10g data structures.
Applications written, for instance, in Java, can consume these data. The
types of queries supported by Hermes are: (a) queries on stationary
objects, like: point, range, distance-based, topological, and nearest-
neighbor queries; (b) queries on moving reference objects (distance-

17

based and similarity queries); (c) Join queries; (d) queries involving
unary operators (traveled distance, speed).

Actually, given that Hermes consists, essentially, in a set of data types,
an application designer can define a database schema that uses these
data types, and take advantage of their functionality. For example, to
describe the movement of a toxic cloud, one could define a relation:

 Cloud (id:integer, name: varchar, shape: moving_polygon)

Then, an application programmer could write code that uses these data
structures, to find, for instance, when did the cloud arrived to
California. Obviously, formally, the expressive power is provided by
the data types, because there is no language associated to Hermes.
Instead, a host language (Java, PL-SQL, both), is used.

Having introduced Hermes, we are ready to discuss the spatio-temporal
data warehousing architecture for GeoPKDD

The GeoPKDD Trajectory Data Warehouse. Figure 3, taken from
Damiani, Vangenot, Frentzos, Marketos, Theodoridis, Veryklos, and
Raffaeta (2007), depicts the GeoPKDD trajectory warehouse
architecture (TDW). Initially, location data is captured, and handled by
a so-called trajectory stream manager, which builds trajectories from
these data (e.g., splitting the raw data according to some criteria,
providing a trajectory identifier, among other functionalities. These
trajectories are stored in a relational table, denoted RelTrajectories, and
then loaded into a moving object database (MOD), which is in turn
managed by the Hermes system introduced above. Basically, the MOD
includes a relation MODTrajectories with schema (Oid ,trajectoryid,
trajectory), where trajectory is of type Moving Point. Actually,
although this may appear redundant, since trajectories are stored twice,
this is required to be able to work with the the moving point data type.
Finally, an ETL (Extraction, Transformation, and Loading) process,
feeds the TDW. Queries to this warehouse can integrate geographical
data. Below, we give details of the TDW.

18

Figure 3. The trajectory warehouse architecture.

The trajectory data warehouse model proposed upon the criteria
commented above, is based on the classic star schema. It contains a
standard temporal dimension, and two spatial dimensions. The former
ranges over equally sized time intervals, which are aggregated
according to larger intervals as we move up in the dimension hierarchy
(e.g., the interval [60,120] aggregates over the interval [0,120]). The
spatial dimensions, denoted DimX and DimY, range over equally sized
spatial intervals (x,y, respectively), defining the cells where measures
are recorded. A fact table containing references to the dimensions and
(some of) the measures commented above, exists, in this case,
presence, crossX, crossY, and crossT, where, for instance, crossX is the
number of distinct trajectories crossing the spatial border between two
cells along the horizontal axis. Roll-up and drill-down are performed
aggregating measures over the cells, at different granularities (for
instance, combining two or more cells). The key of this fact table is
composed of the keys of the dimensions, namely dimX_id, dimY_id,
dimT_id. We remark that the actual implementation has a slightly
different form than this model, although for presentation clarity, in
what follows we base ourselves on this structure. The interested
reader can see Marketos, G., Frentzos, E., Ntousi, I., Pelekis, N.,
Raffaeta, A., & Theodoridis, Y. (2008) for the actual implementation.
It is important to note that no trajectory information is recorded in the
TDW. This information lies only in the MOD, and can be used for

19

querying, along with the information in the TDW, in order to obtain
higher level information. In addition,
modeling and storing trajectories is performed with Hermes.

A relevant feature of the TDW proposal is the treatment given to the
ETL process, that transform the raw location data and loads it to the
trajectory data warehouse. This process design is aimed at minimizing
the amount of memory needed to load and transform raw data into
trajectory data. For this, Orlando et al. (2007) define a model
supporting two equivalent forms of trajectory representation: (a) the
standard (Oid,x,y,t); (b) an alternative representation where coordinates
in the trajectory database are replaced by cell identifiers that cover the
(x,y) points. In this case, the tuples in the trajectory database are of the
form (Oid,Cellid,t) In addition, other information of interest could be
recorded, like, for instance, signal strength. As we explained above, the
raw location data (usually arriving as a continuous data stream) is
transformed into trajectory data, splitting the former according to
certain assumptions like, for instance, if a large time gap between two
consecutive sampled positions, a new trajectory identifier is created
starting from the latter position.

The TDW introduced at the beginning of this section, is based on
requirements that the authors defined for the dimensions and measures.
We now discuss the rationale for this design. For the dimensions, they
include temporal, spatial and thematic dimensions. The choice for the
measures impact on the design and query evaluation processes. Typical
measures include: (a) number of trajectories in a cell; (b) number of
trajectories entering and/or leaving a cell, denoted presence
(Cx,y.presence); (c) number of objects in a cell in a certain interval; (d)
distance covered by trajectories in the cell, and the time spent in a cell;
(e) velocity of trajectories in the cell. OLAP operations require
aggregation of these measures over the set of cells. The problem of
double counting arises for some of these measures, like (a) above. This
problem appears not only during aggregation of the base data during a
roll-up operation, but also in the loading phase. For example, suppose
we have three consecutive observations o1, o2 and o3; further, o1 and
o3 fall in the same cell, but o2 does not. When o3 arrives, the system
stores a duplicate for Cx,y.presence (recall data is assumed to come as a
continuous input stream). The presence measure deserved an in-depth
treatment in (Orlando et al., 2007), where the problem of multiple
counting was addressed, and some strategies for approximating the

20

results of computing the pre-aggregated facts were proposed. For
instance, linear interpolation is used to prevent omitting in the result
the cells crossed by a trajectory but such that no sampling occurred
within them. Finally, two alternative functions for computing the
aggregate presence are defined and compared against each other: one
algebraic, and one distributive. The authors address the problem of
double counting during aggregation, borrowing from statistical
methods. For example, knowing the values of presence for two cells,
Cx,y and Cx+1,y, and defining a new cell, Cx’,y’= Cx,y U Cx+1,y, the
aggregate presence over the new cell, will be:

Cx’,y’.presence = Cx,y.presence + Cx+1,y.presence - Cx,y.crossX

where Cx,y.crossX is the number of distinct trajectories crossing the
spatial border between Cx,y and Cx+1,y.

Some example queries are provided in Orlando et al. (2007), and the
two presence functions implemented (i.e., distributive and algebraic). It
is reported that algebraic presence is more difficult to implement
because it requires the combination of several aggregate functions and
using non/standard SQL operations. The experiments reported showed
that the distributive function (sum) quickly reaches large errors when
the roll-up granularity increases. The algebraic method resulted to be
more accurate.

With respect to querying the TDW, and from the point of view of the
expressive power of the proposal, considerations here are similar to the
ones we made when discussing Hermes. The data types provide the
functionality, and clients can consume them. Of course, this allows any
external data to participate in any query. However, again, the formal
model is embedded in the data types, and the TDW can be regarded as
an application where queries are built on top of the former. This is
reflected in the fact that the warehouse contains only aggregated
information, and the MOD contains the moving point type.
The following is an example of a query over the MOD, showing a
temporal intersection, taken from the TDW demo website.

21

SELECT
m.trajectory.at_period(tau_tll.d_period_sec(tau_tll.
D_Timepoint_Sec(2006,11,24,7,45,0),
tau_tll.D_Timepoint_Sec(2006,11,24,7,52,0))).to_stri
ng() as trajectory
FROM modtrajectories m where m.obj_id=1 and
m.traj_id=87

Here we can see that the table in the FROM clause is
MODTrajectories, which includes the moving point data type. These
kinds of queries could also use the fact tables that contain aggregate
data. Dimensions and fact tables could also be analyzed using any
OLAP viewer.

THE PIET FRAMEWORK

An approach different from the ones discussed previously in this paper
was presented in the Piet framework (http://piet.exp.dc.uba.ar/piet).
The Piet data model was introduced by Escribano, Gomez, Kuijpers,
and Vaisman (2007) and Gómez, Haesevoets, Kuijpers, and Vaisman
(2007). The core idea is the integration of spatial, spatio-temporal, and
non-spatial data, in a single framework, oriented to solve many of the
problems discussed in Section “Data Warehousing and OLAP”.

Dimensions
The model defines a GIS dimension as composed of a set of graphs,
each one describing a set of geometries in a thematic layer. A GIS
dimension is considered, as usual in databases, as composed of a
schema and instances. Figure 4 shows the schema of a GIS dimension:
the bottom level of each hierarchy, denoted the Algebraic part,
contains the infinite points in a layer, and could be described by means
of linear algebraic equalities and inequalities (Paredaens, Kuper, &
Libkin, 2000). Above this part there is the Geometric part, which stores
the identifiers of the geometric elements of the GIS, and is used to
solve the geometric part of a query. Each point in the Algebraic part
may correspond to one or more elements in the Geometric part (e.g., if
more than one polylines intersect with each other). Thus, at the GIS
dimension instance level we will have rollup relations (denoted

). For instance, says that, in a layer
Lcity a point (x,y) corresponds to a polygon identified by pg1 in the
Geometric part. In spite of this, the authors propose a mechanism to

22

precompute the overlayed layers in the map, that turns these relations
back into rollup function, i.e., where a point (x,y) will correspond to
exactly one geometry identifier. Finally, there is the OLAP part for
storing non-spatial data. This part contains the conventional OLAP
structures, as defined in (Hurtado, Mendelzon, & Vaisman, 1999). The
levels in the geometric part are associated to the OLAP part via a
function, denoted For instance, associates
information about a river in the OLAP part (riverId) in a dimension
Rivers, to the identifier of a polyline (gr) in a layer denoted Lr, which
represents rivers in the Geometric part.

Figure 4. An example of a GIS dimension Schema

Example 1. Figure 4 shows a GIS dimension schema, where we
defined three layers, for rivers, volcanoes, and states, respectively. The
schema is composed of three graphs; the graph for rivers, for instance,
contains edges saying that a point (x,y) in the algebraic part relates to
line identifiers in the geometric part, and that in the same portion of the
dimension, lines relate to polyline identifiers. In the OLAP part we
have two dimensions, representing districts and rivers, associated to the
corresponding graphs, as the figure shows. For example, a river
identifier at the bottom layer of the dimension representing rivers in the
OLAP part, is mapped to the polyline level in the geometric part in the
graph representing the structure of the rivers layer.

23

Figure 5 shows a portion of a GIS dimension instance for the rivers
layer Lr in the dimension schema of Figure 4. We can see that an
instance of a GIS dimension in the OLAP part is associated (via the
function) to the polyline pl1 which corresponds to the Colorado river.
For clarity, we only show four different points at the point level (x1,y1)
… (x4,y4). There is a relation containing the association of
points to the lines in the line level. Analogously, there is also a relation

 between the line and polyline levels, in the same layer. �

Time in the OLAP part will be represented by a Time dimension
(actually, there could be more than one Time dimension, supporting,
for example, different notions of time). As it is well-known in OLAP,
this dimension can have different configurations that depend on the
application at hand.

Figure 5. A GIS dimension instance for Figure 4.

Measures and Facts
A key point in the Piet model is the way it accounts for measures and
fact tables. Most of the proposals discussed above consider spatial
measures, and apply OLAP operators over them. Piet is capable of
working in this way, operating over the GIS dimensions (the authors
define the concept of spatial aggregation for this), but also of using
facts defined in the OLAP part, to support spatial DSS queries, like the
ones commented in the introductory section of this paper. Thus,
elements in the geometric part are associated with facts, each fact being

24

quantified by one or more measures, not necessarily a numeric value.
The following example gives the intuition of a so-called GIS fact table.
For details, we refer the reader to (Gómez et al., 2007).
Example 2. Consider a fact table containing state populations. Also
assume that this information will be stored at the polygon level. In this
case, the fact table schema would be (polyId,Ls,population) where
polyId is the polygon identifier, Ls represents the states layer, and
population is the measure. If information about, for example,
temperature data, is stored at the point level, we would have a base fact
table with schema (point, Le,temperature), with instances of the form
(x1,y1,Le,25) Note that temporal information could be also stored in
these fact tables, by simply adding the time dimension to the fact table.
This would allow storing temperature information across time. �
Example 2 shows that, basically, a GIS fact table is a standard OLAP
fact table where one of the dimensions is composed of geometric
objects in a layer. Classical fact tables in the OLAP part, defined in
terms of the OLAP dimension schemas can also exist. For instance,
instead of storing the population associated to a polygon identifier, this
information may reside in a data warehouse, with schema
(state,population).

Geometric Aggregation
Based on the data model described above, the notion of geometric
aggregation was defined. However, in general, geometric aggregation
queries are hard to evaluate, because they require the computation of a
double integral representing the area where some condition is satisfied.
Thus, Piet addresses a class of queries denoted summable, of the form:

, where h is a function (represented, for instance, by a fact
table), and the sum is performed over all the identifiers of the objects
that satisfy a condition. For example, the query “total population of the
cities crossed by the Colorado River would read:

25

The meaning of the query is: maps the identifier
of the Colorado river to a polyline in layer Lr (representing rivers). The
relation contains the mapping between the points and
the polylines representing the rivers that satisfy the condition. The
other functions are analogous. Thus, the identifiers of the geometric
elements that satisfy both conditions can be retrieved, and the sum of
ftpop (which represents the population associated to a polygon gid)
over these objects can be performed.

Discussion
Piet supports four kinds of queries: (a) Pure Geometric Queries, like
“Districts crossed by at least one river”; (b) Geometric Aggregation
Queries, like “List each region, along with the total number of rivers
that crossed it”, or “For each region show the total length of the part of
rivers which intersects it, only for regions with at least an area under
cereal cultivation equal or higher than 1000 Km2”; (c) Geometric
Aggregation Queries limited to a query region, like “List each region
with the total number of rivers that crossed it, considering only the part
of the river that lies within the query region”; (d) GISOLAP Queries
which integrate GIS and OLAP in a very natural way. A query of this
kind is, for example, “Unit Sales, Store Cost and Store Sales for
products and promotion media offered by stores only in provinces
crossed by rivers”. These queries can be expressed in the Piet-QL
language (Gómez, Vaisman, & Zich, 2008). Piet-QL also allows to
place constraints over a data cube, including pre-aggregated facts into
the WHERE clause. (A functional demo of Piet-QL, and some example
queries can be fount at http://piet.exp.dc.uba.ar/pietql). A typical
example of a Piet-QL query is:

“Names of cities in provinces crossed by the Dÿle river, in Belgium,
such that the cities had sales greater than 5000 units.”

Variables in Piet-QL range over elements in the thematic layers. Thus,
in the FROM clause below, the expression bel_city lc1 means that lc1
will be instantiated with all the polygonsrepresenting cities in the layer
bel_city.

26

SELECT GIS lc1.name
FROM bel_city lc1, bel_prov lp2, bel_river lr2
WHERE contains(lp2,lc1) AND
intersects(lp2,lr2) AND lr2.name=“Dÿle”
AND lc1 IN(

SELECT CUBE
filter([Store].[Store City].Members,
[Measures].[Unit Sales]>5000)
FROM [Sales])
AND lp2 IN(

SELECT CUBE
filter([Store].[Store City].Members,
[Measures].[Unit Sales]>0)
FROM [Sales]))

Piet-QL supports the following kinds of queries: (a) pure GIS queries;
(b) pure OLAP queries; (c) GIS queries filtered with aggregation (i.e.,
filtered using a data cube); (d) OLAP queries filtered using a geometric
or geographic condition. The query above corresponds to class (c).

If we consider the classification proposed by Pelekis et.al., (2004),
attribute, point, range, distance-based, nearest neighbor and topological
queries are supported by Piet-QL (i.e., geometric queries). Note that
these queries could be used to build the other ones, that include
aggregation and OLAP capabilities.

Overlay Pre-computation in Piet. Many interesting queries in GIS
require computing intersections, unions, etc., of objects that are in
different layers. Hereto, their overlay has to be computed. For the
summable queries defined above, on-the-fly computation of the sets
“C” containing all those cities in the example, would be costly, mainly
because most of the time we will need to go down to the Algebraic part
of the system, and compute the intersection between the geometries
(e.g., states and rivers, cities and airports). In addition to the typical R-
tree-based techniques commented in previous sections, Piet
implements a different strategy for materialization, consisting in three
steps: (a) partitioning each layer in sub-geoemetries, according to the
carrier lines defined by the geometries in each layer (see below); this
allows detecting which geographic regions are common to the layers

27

involved; (b) pre-computing the overlay operation; (c) evaluating the
queries using the layer containing all the pre-computed sub-geometries
.

Figure 6. The carrier sets of a point, a polyline and a polygon are the
dotted lines.

The carrier set of a layer induces a partition of the plane into open
convex polygons, open line segments and points. Thus, the rollup
relations r will turn into functions (given that no two points can map to
the same open convex polygon). Given CL and a bounding box, we
denote the convex polygonization of L, the set of open convex
polygons, open line segments and points, induced by CL, that are
strictly inside the bounding box. Given two layers L1 and L2, and their
carrier sets CL1

 and CL2
, the common sub-polygonization of L1

according to L2, denoted is a refinement of the convex
polygonization of L1, computed by partitioning each open convex
polygon and each open line segment in it along the carriers of CL2

.

This can be generalized for more than two layers. Figure 6 illustrates
the carrier sets of a point, a polyline and a polygon.
Experimental evaluation showed that overlay pre-computation (i.e.,
pre-computing the common sub-polygonization) in general can perform
better that R-trees, and also be competitive with aR-trees, except when
the query region must be computed in running time, because computing
the intersection between the query region and the common sub-
polygonization, turns out to be expensive in some situations (Escribano
et al., 2007).

28

EXTENDING THE PIET FRAMEWORK TO TRAJECTORY
DATA

Moving objects are integrated in the framework presented above, by
means of a distinguished fact table that we denote Moving Object Fact
Table (MOFT).
Let us introduce an example. Figure 7 (left) shows a (very) simplified
map of Paris, containing two hotels, denoted Hotel 1 and Hotel 2 (H1
and H2 from here on), the Louvre and the Eiffel tower. We consider
three moving objects, O1, O2 and O3. Object O1 goes from H1 to the
Louvre, the Eiffel tower, spends just a few minutes there, and returns to
the hotel. Object O2 goes from H2 to the Louvre, the Eiffel tower,
(spending a couple of hours visiting each place), and returns to the
hotel. Object O3 leaves H2 to the Eiffel tower, visits the place, and
returns to H2. Figure 7 (center) shows part of these trajectory samples.
All points of the same trajectory are temporally ordered and stored
together (i.e., the raw trajectories table is sorted by Oid and t). In what
follows, we will use the object identifier as the trajectory identifier,
unless specified, although it is usual to generate a trajectory identifier
in a pre-processing step. This is motivated by the fact that,in general,
trajectories are given as continuous data streams, that need to be
partitioned according to a certain criteria, for example, when a
minimum amount of time without movement occurs. In that case, Oid
will not be a trajectory identifier any longer.
In this scenario, for instance, a GIS user may be interested in queries
like “number of persons going from H1 to the Louvre and then to the
Eiffel tower (stopping to visit both places) in the same day”. Also, a
data mining analyst may want to identify interesting patterns in the
trajectory data using association rule mining or sequential patterns
algorithms, like “people do not visit two museums in the same day”.
Complex queries that aggregate non-spatial information, and also
involve GIS and moving object data, must also be addressed. For
instance, “total sales in museum shops, for museums located on the left
bank of the Seine, such that people visit them before going to the Eiffel
Tower in the same day”.
A moving object fact table (MOFT for short, see the table in the center
of Figure 7), contains a finite number of identified trajectories.
Definition 1 formalizes this.

29

Definition 1 (Moving Object Fact Table) Given a finite set T of
trajectories, a Moving Object Fact Table (MOFT) for T is a relation
with schema <Oid, T, X,Y>, where Oid is the identifier of the moving
object, T represents time instants, and X and Y represent the spatial
coordinates of the objects. An instance M of the above schema contains
a finite number of tuples of the form <Oid, t, x,y> that represent the
position (x,y) of the object Oid at instant t, for the trajectories in T. �

In practice, the MOFTs can contain huge amounts of data. For instance,
suppose a GPS takes observations of daily movements of one thousand
people, every ten seconds, during one month. This gives a MOFT of
1000 360 24 30=259,200,000 records. In this scenario, querying
trajectory data may become extremely expensive. Note that a MOFT
only provides the position of objects at a given instant. Sometimes we
are not interested in such level of detail, but we look for more
aggregated information instead. For example, we may want to know
how many people go from a hotel to a museum on weekdays. Or, we
can even want to perform data mining tasks like inferring trajectory
patterns that are hidden in the MOFT. These tasks require semantic
information, not present in the MOFT. In the best case, obtaining this
information from that table will be expensive, because it would imply a
join between this table and the spatial data.
As we commented above, the notion of stops and moves was recently
introduced. Intuitively, if a moving object spends a sufficient amount
of time in a certain geographic place (which we denote a place of
interest of an application, PoI for short), this place is considered a stop
of the object’s trajectory. In-between stops, a trajectory has moves.
Gómez, Kuijpers, & Vaisman (2008b) present an in-depth study on
how moving object data analysis can benefit from replacing raw
trajectory data by a sequence of stops and moves. The authors propose
to use the notion of stops and moves in order to obtain a concise
MOFT, that can represent the trajectory in terms of places of interest,
characterized as stops. This table cannot replace the whole information
provided by the MOFT, but allows to quickly obtain information of
interest without accessing the complete data set. In this sense, this
concise MOFT, which we will denote SM-MOFT, behaves like a
summarized materialized view of the MOFT. The SM-MOFT will
contain the object identifier, the identifier of the geometries
representing the Stops, and the interval [ts,tf] of the stop duration.
Obviously, we do not need to store the information about the moves,

30

which remains implicit, because we know that between two stops there
could only be a move. Definition 2 formalizes the above.

Definition 2 (SM-MOFT) Let the set ,

 be the PoIs of an application, and let M be a

MOFT. The SM-MOFT Msm of M with respect to PA consists of the
tuples (Oid,gid,ts,tf) such that (a) Oid is the identifier of a trajectory in
M; (b) gid is the identifier of the geometry of a PoI of
PA, such that the trajectory with identifier Oid in M has a stop in this
PoI during the time interval [ts,tf]. This interval is called the stop
interval of this stop. �

The table in Figure 7 (right) shows the SM-MOFT for our example of
the beginning of this section.

Figure 7. Three trajectories (left), the MOFT (center), and the SM-
MOFT (right)

Spatio-Temporal Aggregation in Piet
The approach for spatio-temporal aggregation in Piet, differs from
other proposalswe discussed in this paper. Gómez et al. (2008b) define

31

a query language, denoted RE-SPaM, based on regular expressions,
and aimed at obtaining sequential patterns in trajectory databases.
Aggregation is performed on top of this language, applying aggregate
operators to the sequences that are in the query result. Association rule
analysis is also supported by this approach. Four key features
characterize RE-SPaM:

1. Items are not only composed of identifiers, but are also complex
objects, composed of attributes that can be organized in
hierarchies. This allows adding OLAP capabilities to the
language in a very natural way.

2. The support of rollup functions allows performing mining at
different levels of aggregation. Thus, complex sequential patterns
can be found, at different granularity levels.

3. It can be proved that RE-SPaM is actually a subset of the first-
order language introduced in Section “Geometric Aggregation”
extended to support moving objects. We denoted this language
Lmo.

4. As a consequence of the above, not only semantic trajectories are
supported, but also, if necessary, one can go back to the base
data, in order to support any kind of queries, for instance, most
of the ten queries in the benchmark proposed by Theodoridis
(2003). In fact, aggregation is not considered in such benchmark.

We do not give the formal definition of the language, but we give the
idea through a couple of examples.

We begin with a query not including aggregation, using only
semantic trajectories (i.e., the SM-MOFT): “Trajectories going from a
hotel to a tourist attraction, stopping at the latter, and ending at a hotel
(maybe it had stopped at several other places)”. The query simply reads
in RE-SPaM:

H.T.? .H.

Adding conditions over the labels of the elements in the language, like
in: “Trajectories going from the Eiffel tower to the Hilton hotel”, we
would have:

T[name=“Eiffel”].H[name=“Hilton”].

32

The conditions could be extended with functions (e.g., rollup functions,
topological functions), and variables. Basically, the language is defined
as follows.
Definition 3 (R.E. for Stops and Moves) A regular expression on
stops and moves, denoted RE-SPaM is an expression generated by the
grammar
 E dim|dim[cond]|(E)*|(E)+|E.E| |?

where dim D (a set of dimension names in the OLAP part), is the
symbol representing the empty expression, “.” means concatenation,
and cond represents a condition that can be expressed in Lmo. The term
“? ” is a wildcard meaning “any sequence of any number of dim”. �

The semantics of the language is the following: for each trajectory T in
an SM-MOFT such that there is a sub-trajectory of T that matches the
expression, the query returns the Oid of T. Aggregate functions can be
applied over this result. An example including aggregation is the query:
“Total number of trajectories from a Hilton hotel to a tourist
attraction, stopping at a museum,” which reads in RE-SPaM:

 COUNT(H[name=“Hilton"].? .M.? .T)

As another example, including a rollup function, the query “Total
number of trajectories that went from a Hilton hotel to the Louvre, in
the morning” is expressed in RE-SPaM:

In these queries, the conditions are evaluated over the current nodes
(the node the parser is currently evaluating). Also, ts is a special
variable representing the starting point of the time interval of the node
of the automaton -see (Gómez, Kuijpers, & Vaisman, 2008b) for
details), that is being visited when evaluating the expression. The next
query illustrates the full power of the language, since it includes
geometric and temporal conditions that show how all elements in the
model interact. Note that in the query, the SM-MOFT is not enough,
and we need to go to the geometry. However, for many useful queries
and patterns, much simpler expressions will suffice. The query is:

33

‘‘Total number of trajectories going from a tourist attraction to a
museum in the 19th district of Paris in the morning,” and in RE-SPaM
reads:

Let us explain this expression. The function , maps
the id of the PoI (i.e., a museum) in the extension of the current node
(p), to the polygon representing it in the geographic part (gid). The
rollup identifies the x,y coordinates corresponding
to gid. The function has the meaning already
explained, i.e., it maps a district identifier d in the Distr dimension to a
polygon identifier in layer Ld. The equality checks
that the point of the trajectory belongs to the 19th district. M is the
MOFT containing the trajectory samples.

CONCLUSION: DISCUSSING THE PROPOSALS

We will focus on comparing the two proposals (introduced in the
context of the GeoPKDD project) that, in our opinion, more
comprehensively address the issue of spatio-temporal OLAP:
Hermes/TDW, and Piet. The other proposals discussed in sections
“Spatial Data Warehousing and OLAP” and “Spatio-Temporal Data
Warehousing, OLAP and Mining” address different parts of the
problem, but no spatio-temporal OLAP as a whole. We show below
that, even though there exists some degree of overlapping, both
approaches tackle different parts of the SOLAP problem. We remark
that the analysis will be performed in terms of the capabilities to fulfill
SOLAP requirements.

Hermes does not specifically address SOLAP support. It is left open
(although not explicitly stated) as a possible application of the general
framework, but no formal model supports spatial data aggregation,
because Hermes has not been designed as a model for spatio-temporal
decision support. On the other hand, Piet focuses on GIS-OLAP
integration, and is oriented specifically toward aggregate queries and

34

spatial decision-support, although, as showed, standard spatial queries
are also supported.

Integrating geographic data and warehouse data is not built into the
Hermes model, while Piet handles this integration through the “!”
function. As of the moment when this paper is being written, this
binding must be performed “manually”, and a tool for automatically
matching geometric elements in the GIS layers to non-spatial objects in
the warehouse, is being implemented for Piet. On the Hermes side,
integration of an external warehouse would require defining, in an ad-
hoc fashion, how geographic objects will be mapped to warehouse
objects.

Being conceived as a SOLAP system, the Piet formal data model also
integrates naturally into the SOLAP framework the problem of
modeling and analyzing trajectory data, either using the whole
trajectory data (i.e., the MOFT), or the semantic trajectory represented
via the SM-MOFT.

Probably the strongest feature of the Hermes/TDW proposal is the
analysis and implementations of the ETL process for trajectory data
analysis. On the other hand, Piet does not have similar automatic data
loading machinery, and assumes that data has already been loaded into
a trajectory file.

In the TDW approach, only aggregate measures are loaded into a fact
table, and dimensions conform cells in a three-dimensional space
(x,y,t). The main achievement, in this sense, is the treatment of double
counting for some of the measures. Trajectory data is stored in the
moving object database (MOD), and it is used to extract higher level
knowledge that may also be used to feed the TDW. Therefore, the
TDW could be considered an application, based on on the traditional
star schema, developed over the underlying architecture. Instead, in the
Piet/RE-SPaM (Piet’s regular query language for trajectories)
approach, the MOFT and SM-MOFT do not store aggregated
measures (actually, the “facts” here are represented by the existence of
the trajectory in the database, in a sense, a kind of boolean measure),
but just the base trajectories (or the “semantic” trajectories, in the SM-
MOFT). In fact, the MOFT is, basically, the RELTrajectories table in
the TDW approach, which suggests that both approaches may
complement each other in this sense. Aggregation over the ‘cells’
hierarchy could be supported by RE-SPaM, although the language is

35

mainly oriented to trajectory pattern mining. Further, aggregation is
performed over trajectories that satisfy a certain pattern - see (Gómez,
Kuijpers, & Vaisman, 2008a) for details on the different aggregate
operators and their arguments. In summary, implementing aggregation
over cells in Piet, in the way proposed in GeoPKDD would not be
trivial.

The Hermes-MDC framework supports moving objects that can change
shape or position over time, while Piet assumes that the regions and
geometric objects, in general, are static, and that traceable objects
(e.g., representing pedestrians, buses, cars) move through the
geographic space. In other words, Piet does not provide temporal
support for the GIS part of the model, only for the moving objects
whose trajectories are being analyzed.

Finally, all Piet software components are open source: the database,
postgres, and its GIS extension posGIS (http://postgis.refractions.net),
the Mondrian OLAP server (http://www.mondrian.sourceforge.net) ,
and Java. On the other hand, Hermes is built as an extension of Oracle
10g.

Table 1 summarizes the similarities and differences between Hermes,
the TDW, and Piet/ RE-SPaM.

Acknowledgements. This research has been partially funded by the
European Union under the FP6-IST-FET program, Project n. FP6-
14915, “GeoPKDD: Geographic Privacy-Aware Knowledge Discovery
and Delivery”, (www.geopkdd.eu) and by the Research Foundation
Flanders (FWO-Vlaanderen), Research Project G.0344.05, and the
Argentinian National Scientific Agency, project PICT 2004 11-21.350.

36

 Hermes Trajectory
DW

Piet RE-SPaM

GIS-OLAP
integration

No Through
Hermes-MDC

Yes Yes

SOLAP Formal
model

No N/A Yes N/A

Fact table N/A (can
be defined
ad-hoc)

Pre-
aggregated
measures

External,
defined in the
OLAP part

MOFT,SM MOFT
(no pre-
aggregation)

Query
Language

PL-SQL PL-SQL Piet-QL RE-SPaM

Support for
spatial
aggregation

Ad-hoc Yes Yes Yes

Support for
querying an
external DW

Ad-hoc Ad-hoc Built-in Built-in

Spatial
Queries

Point,Rang
e, distance,
nearest-
neighbor

Point,Range,
distance,
nearest-
neighbor

Point,Range,
distance,
nearest-
neighbor

Point,Range,
distance,
nearest-
neighbor

Mining
capabilities

No Through
external
functionality

No Yes

Roll-up and
drill-down
over spatial
objects

No Yes Through Piet-
QL

No

Support of
changing
objects

Yes Through
Hermes-MDC

No No

Temporal
support

Yes Through
Hermes-MDC

No Only for moving
points

ETL Support
and tools

N/A Yes No No

Semantic
trajectory
support

N/A Through
external
functionality

N/A Built-in

Open Source
Architecture

No No Yes Yes

Needs non-
standard data
libraries for
querying?

Yes Yes No No

Table 1. Comparing Hermes, TDW, Piet and RE-SpaM.

37

REFERENCES

Alvares, L. O., Bogorny, V., Kuijpers, B., Macedo, J. A. F. de,
Moelans, B., & Vaisman, A. (2007). A model for enriching trajectories
with semantic geographical information. In ACM-GIS 2007.

Bédard, Y., Merret, T., & Han, J. (2001). Fundamentals of spatial data
warehousing for geographic knowledge discovery. In Geographic data
mining and knowledge discovery (p. 53 – 73). Taylor & Francis.

Bédard, Y., Rivest, S., & Proulx, M.-J. (2007). Spatial online analytical
processing (SOLAP): Concepts, architectures, and solutions from a
geomatics engineering perspective. In Data warehouses and OLAP:
Concepts, architectures and solutions (p. 298 – 319). IGI Global.

Bimonte, S., Tchounikine, A., & Miquel, M. (2005). Towards a spatial
multidimensional model. In DOLAP (p. 39-46).

Brakatsoulas, S., Pfoser, D., & Tryfona, N. (2004). Pre-aggregation in
spatial data warehouses. In Proceedings of IDEAS’04 (p. 68-77).
Washington D.C, USA.

Buchmann, A. P., Günther, O., Smith, T. R., & Wang, Y.-F. (1990).
Design and implementation of large spatial databases. In First
symposium (SSD) (Vol. 409). Springer.

Cabibbo, L., & Torlone, R. (1997). Querying multidimensional
databases. In Database programming languages (Vol. 1369, p. 319–
335). Springer.

Codd, E. F. (1970). A relational model of data for large shared data
banks. Communications of the ACM, 13(6), 377–387.

Damiani, M., & Spaccapietra, S. (2006). Spatial data warehouse
modelling. In Processing and managing complex data for decision
support (p. 21 – 27). Idea Group.

Damiani, M. L., Macedo, J. A. F. de, Parent, C., Porto, F., &
Spaccapietra, S. (2007). A conceptual view of trajectories. Technical
Report, Ecole Polythecnique Federal de Lausanne, April 2007.

38

Damiani, M. L., Vangenot, C., Frentzos, E., Marketos, G., Theodoridis,
Y., Veryklos, V., Raffaeta, A. (2007). Design of the trajectory
warehouse architecture. Technical Report D1.3, GeoPKDD project.

Eder, J., Koncilia, C., & Morzy, T. (2002). The COMET metamodel
for temporal data warehouses. In Caise (p. 83-99).

Escribano, A., Gomez, L., Kuijpers, B., & Vaisman, A. A. (2007). Piet:
a GIS-OLAO implementation. In ACM 10th international workshop on
data warehousing and OLAP (DOLAP) (p. 73–80). ACM.

Etzion, O., Jajodia, S., & Sripada, S. M. (Eds.). (1998). Temporal
databases: Research and practice. Springer.

Frentzos, E., Gratsias, K., & Theodoridis, Y. (2007). Index-based most
similar trajectory search. In ICDE (p. 816-825).

Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007). Trajectory
pattern mining. In KDD (p. 330-339). San Jose, California, USA.

Gómez, L., Haesevoets, S., Kuijpers, B., & Vaisman, A. A. (2007).
Spatial aggregation: Data model and implementation. CoRR,
abs/0707.4304.

Gómez, L., Kuijpers, B., & Vaisman, A. A. (2008a). Aggregation
languages for moving object and places of interest. In SAC 2008 -
ASIIS track.

Gómez, L., Kuijpers, B., & Vaisman, A. A. (2008b). Querying and
mining trajectory databases using places of interest. Annals of
Information Systems (in press).

Gómez, L., Vaisman, A., & Zich, S. (2008). Piet-QL: a query language
for GIS-OLAP integration. In ACM/GIS 2008 (to appear).

Gonzalez, H., Han, J., Li, X., Myslinska, M., & Sondag, J. P. (2007).
Adaptive fastest path computation on a road network: A traffic mining
approach. In VLDB (p. 794-805).

Güting, R. H., & Schneider, M. (2005). Moving objects databases.
Morgan Kaufman.

39

Güting, R. H., Böhlen, M., Jensen, C., Lorentzos, N., Schneider, M. &
Vazirgiannis, M. (2000). A foundation for representing and quering
moving objects. In ACM Transactions Database Systems, 25(1), (p. 1-
42

Gutman, A. (1984). R-trees: A dynamic index structure for spatial
searching. In Proceedings of SIGMOD’84 (p. 47-57).

Han, J., Stefanovic, N., & Koperski, K. (1998). Selective
materialization: An efficient method for spatial data cube construction.
In Research and development in knowledge discovery and data mining
(PAKDD) (Vol. 1394, p. 144-158). Springer.

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996). Implementing
data cubes efficiently. In SIGMOD conference (p. 205–216). ACM
Press.

Hornsby, K., & Egenhofer, M. J. (2002). Modeling moving objects
over multiple granularities. Ann. Math. Artif. Intell., 36(1-2), 177-194.

Hurtado, C., Mendelzon, A., & Vaisman, A. (1999). Maintaining data
cubes under dimension updates. In Proceedings of ICDE (p. 346-355).

Jensen, C. S., Kligys, A., Pedersen, T. B., & Timko, I. (2004).
Multidimensional data modeling for location-based services. VLDB,
13(1), 1–21.

Kakoudakis, I. (1996). The TAU Temporal Object Model. M.Ph.
Thesis.UMIST, Department of Computation.

Kimball, R. (1996). The data warehouse toolkit. J.Wiley and Sons, Inc.

Kimball, R., & Ross, M. (2002). The data warehouse toolkit: The
complete guide to dimensional modeling, 2nd. ed. J.Wiley and Sons,
Inc.

Kuijpers, B., & Vaisman, A. (2007). A data model for moving objects
supporting aggregation. In Proceedings of the first international
workshop on spatio-temporal data mining (STDM). Istambul, Turkey.

Lee, J.-G., Han, J., & Whang, K.-Y. (2007). Trajectory clustering: a
partition-and-group framework. In SIGMOD conference (p. 593-604).

40

Lenz, H., & Shoshani, A. (1997). Summarizability in olap and
statistical data bases. In Ninth international conference on scientific
and statistical database management, proceedings, august 11-13, 1997,
olympia, washington, usa (p. 132-143). IEEE Computer Society.

López, I. F. V., Snodgrass, R., & Moon, B. (2005). Spatiotemporal
aggregate computation: A survey. IEEE Transactions on Knowledge
and Data Engineering, 17(2), 271–286.

Malinowski, E., & Zimányi, E. (2004). Representing spatiality in a
conceptual multidimensional model. In GIS (p. 12-22).

Malinowski, E., & Zimányi, E. (2006). Hierarchies in a
multidimensional model: From conceptual modeling to logical
representation. Data Knowledge Engineering, 59(2), (p.348–377).

Marketos, G., Frentzos, E., Ntousi, I., Pelekis, N., Raffaeta, A., &
Theodoridis, Y. (2008). Building real-world trajectory data
warehouses. In MobiDE’08 (in press).

Mendelzon, A. O., & Vaisman, A. A. (2000). Temporal queries in
OLAP. In VLDB (p. 242-253).

Mendelzon, A. O., & Vaisman, A. A. (2003). Time in
multidimensional databases. In Multidimensional databases (p. 166-
199).

Meratnia, N., & By, R. A. de. (2002). Aggregation and comparison of
trajectories. In ACM-GIS (p. 49-54).

Mouza, C., & Rigaux, P. (2005). Mobility patterns. Geoinformatica,
9(23), 297-319.

Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., & Silvestri, C.
(2007). Spatio-temporal aggregations in trajectory data warehouses. In
DaWaK (p. 66-77).

Papadias, D., Tao, Y., Kalnis, P., & Zhang, J. (2002). Indexing spatio-
temporal data warehouses. In International conference on data
engineering (ICDE) (p. 166–175). IEEE Computer Society.

41

Papadias, D., Tao, Y., Zhang, J., Mamoulis, N., Shen, Q., & Sun, J.
(2002). Indexing and retrieval of historical aggregate information about
moving objects. IEEE Data Eng. Bull., 25(2) (p. 10-17).

Paredaens, J., Bussche, J. Van Den, & Gucht, D. V. (1994). Towards a
theory of spatial database queries. In Thirteenth ACM SIGACT-
SIGMOD-SIGART symposium on principles of database systems,
(PODS) (p. 279–288). ACM Press.

Paredaens, J., Kuper, G., & Libkin, L. (Eds.). (2000). Constraint
databases. Springer-Verlag.

Pedersen, T. B., & Tryfona, N. (2001). Pre-aggregation in spatial data
warehouses. In Advances in spatial and temporal databases (SSTD) (p.
460–480).

Pelekis, N. (2002). Stau: A spatio-temporal extension to ORACLE
DBMS. Ph.D Thesis, UMIST Department of Computation.

Pelekis, N., Theodoulidis, B., Kopanakis, Y., & Theodoridis, Y.
(2004). Literature Review of Spatio-Temporal Database Models. In
The Knowledge Engineering Review journal, 19(3) (p. 235-274).

Pelekis, N., & Theodoridis, Y. (2006). Boosting location-based
services with a moving object database engine. In Mobide (p. 3-10).

Pelekis, N., Theodoridis, Y., Vosinakis, S., & Panayiotopoulos, T.
(2006). Hermes - a framework for location-based data management. In
EDBT (p. 1130-1134).

Pelekis, N., Kopanakis, I., Ntoutsi, ., Marketos, G., Andrienko, G., &
Theodoridis, Y. (2007). Similarity Search in Trajectory Databases. In
Proceedings of the 14th IEEE International Symposium on Temporal
Representation and Reasoning (TIME) (p. 129-140) ACM Press.

Pelekis, N., Kopanakis, I., Ntoutsi, ., Marketos, G., & Theodoridis, Y.
(2007). Mining Trajectory Databases via a Suite of Distance
Operators. In Proceedings of the IEEE/ ICDE workshop on Spatio-
Temporal Data Mining (STDM) (p. 575-584)

42

Pourabbas, E. (2003). Cooperation with geographic databases. In
Multidimensional databases: Problems and solutions (p. 393–432).
Idea group.

Rao, F., Zhang, L., Yu, X., Li, Y., & Chen, Y. (2003). Spatial hierarchy
and OLAP-favored search in spatial data warehouse. In ACM sixth
international workshop on data warehousing and OLAP (DOLAP) (p.
48–55). ACM.

Rigaux, P., Scholl, M., & Voisard, A. (2001). Spatial databases: With
application to GIS. Morgan Kaufmann.

Rivest, S., Bédard, Y., & Marchand, P. (2001). Towards better support
for spatial decision making: Defining the characteristics of spatial on-
line analytical processing (SOLAP). Geomatica, 55(4), 539–555.

Rizzi, S., & Golfarelli, M. (2000). Date warehouse design. In ICEIS (p.
IS 39-42).

Shekhar, S., Lu, C.-T., Tan, X., Chawla, S., & Vatsavai, R. R. (2001).
Map cube: A visualization tool for spatial data warehouses. In
Geographic data mining and knowledge discovery (p. 73 – 108).
Taylor and Francis.

Snodgrass, R. T. (Ed.). (1995). The TSQL2 temporal query language.
Kluwer.

Snodgrass, R. T. (Ed.). (1999). Developing time-oriented database
applications in SQL. Morgan Kaufmann.

Stefanovic, N., Han, J., & Koperski, K. (2000). Object-based selective
materialization for efficient implementation of spatial data cubes. IEEE
Trans. Knowl. Data Eng., 12(6), 938-958.

Stonebraker, M., & Moore, D. (1996). Object-relational DBMSs: The
next great wave. Morgan Kaufmann.

Tao, Y., Kollios, G., Considine, J., Li, F., & Papadias, D. (2004).
Spatio-temporal aggregation using sketches. In ICDE (p. 214-226).

Theodoridis, Y. (2003). Ten benchmark database queries for location-
based services. Comput. J., 46(6), 713-725.

43

Vaisman, A. (2006a). Data quality-based requirements elicitation for
decision support systems. In Data warehouses and olap: Concepts,
architectures and solutions, idea group.

Vaisman, A. (2006b). Requirements elicitation for decision support
ssystems: a data quality approach. In Proceedings of ICEIS’06, volume
3. Cyprus.

Vaisman, A., Izquierdo, A., Ktenas, M.(2006). Web-enabled Temporal
OLAP. In Proceedings of LA_WEB ’06, 220-229, Puebla, Mexico.

Weghe, N. V. de, Cohn, A., Tré, G. D., & Maeyer, P. D. (2005). A
qualitative trajectory calculus as a basis for representing moving
objects in geographical information systems. Control and Cybernetics

Wolfson, O., Sistla, P., Xu, B., & Chamberlain, S. (1999). Domino:
Databases fOr MovINg Objects tracking. In Proceedings of SIGMOD
(p. 547 - 549).

Worboys, M. F. (1995). Gis: A computing perspective.
Taylor&Francis.

Zeiler, M. (1999). Modeling our world: The ESRI guide to geodatabase
design. ESRI Press.

Zhang, L., Li, Y., Rao, F., Yu, X., Chen, Y., & Liu, D. (2003). An
approach to enabling spatial OLAP by aggregating on spatial hierarchy.
In Data warehousing and knowledge discovery (DaWak) (Vol. 2737, p.
35–44). Springer.

44

