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Abstract. In the last years, extending OLAP (On-Line Analytical Pro-
cessing) systems with spatial and temporal features has attracted the
attention of of the GIS (Geographic Information Systems) and database
communities. However, there is no a commonly agreed definition of what
is a spatio-temporal data warehouse and what functionality such a data
warehouse should support. Further, the solutions proposed in the lit-
erature vary considerably in the kind of data that can be represented
as well as the kind of queries that can be expressed. In this paper we
present a conceptual framework for defining spatio-temporal data ware-
houses using an extensible data type system. We also define a taxonomy
of different classes of queries of increasing expressive power, and show
how to express such queries using an extension of the tuple relational
calculus with aggregated functions.

1 Introduction

Geographic Information Systems (GIS) have been extensively used in various ap-
plication domains, ranging from economical, ecological, and demographic anal-
ysis, to city and route planning [21]. Spatial information in a GIS is typically
stored in different so-called thematic layers (or themes). Information in themes
consists of spatial data (i.e., geometric objects) associated to thematic (alphanu-
meric) information.

OLAP (On-Line Analytical Processing) [7] comprises a set of tools and al-
gorithms that allow efficiently querying multidimensional databases containing
large amounts of data, usually called Data Warehouses. In OLAP, data are orga-
nized as a set of dimensions and fact tables. In this multidimensional model, data
can be perceived as a data cube, where each cell contains measures of interest.
OLAP dimensions are further organized in hierarchies that favor the data aggre-
gation process [1]. Several techniques have been developed for query processing,
most of them involving some kind of aggregate precomputation.

In spite of the wide corpus of existing work claiming to solve the problem
of spatial and spatio-temporal data warehousing and OLAP, there is no clear
definition of the meaning of these terms. Moreover, there is no formal notion
of “SOLAP query”, or “Spatio-temporal OLAP query”. Further, existing efforts
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do not clearly specify the kinds of queries addressed. As a consequence, com-
paring proposals or assessing the capabilities of different approaches is difficult.
This paper aims at closing that gap in the following way: (a) first, we define a
taxonomy of models that integrate OLAP, spatial data, and moving data types;
(b) for each of the classes in this taxonomy, we define the queries that they
must support; (c) in order to define these classes of queries, starting from the
tuple relational calculus extended with aggregate functions, we propose a spatio-
temporal calculus supporting moving data types. We show that each extension
defines the kinds of queries in each class of the taxonomy.

The remainder of the paper is organized as follows. Section 2 provides a
comprehensive background on existing work in GIS-OLAP integration. Section 3
introduces the calculus and conceptual model that we use throughout the paper,
as well as presents our running example. Section 4 introduces the taxonomy
of data models. Section 5 defines the queries associated to each class in the
taxonomy. We conclude and describe future work in Section 6.

2 Related Work

In the last years, the topic of extending OLAP with spatial and temporal features
has attracted the attention of the database and GIS communities. In this section
we review relevant efforts in this area.

Rivest et al. [15] introduced the notion of SOLAP (standing for Spatial
OLAP), a paradigm aimed at exploring spatial data by drilling on maps, as
it is performed in OLAP with tables and charts. They describe the desirable fea-
tures and operators a SOLAP system should have. Although they do not present
a formal model for this, SOLAP concepts and operators have been implemented
in a commercial tool called JMAP3. Related to the concept of SOLAP, Shekhar
et al. [16] introduced MapCube, a visualization tool for spatial data cubes. Given
a so-called base map, cartographic preferences, and an aggregation hierarchy, the
MapCube operator produces an album of maps that can be navigated via roll-up
and drill-down operations.

Several conceptual models have been proposed for spatio-temporal data ware-
houses. Stefanovic et al. [19] classify spatial dimension hierarchies according to
their spatial references in: (a) non-geometric; (b) geometric to non-geometric;
and (c) fully geometric. Dimensions of type (a) can be treated as any descriptive
dimension. In dimensions of types (b) and (c) a geometry is associated to the
hierarchy members. Malinowski and Zimányi [9] defined a multidimensional con-
ceptual model, called MultiDim, that copes with spatial and temporal features.
The MultiDim model extends the above classification by considering a dimension
level as spatial if it is represented as a spatial data type (e.g., point, region), and
where spatial levels may be related through topological relationships (e.g., con-
tains, overlaps). In the models above, spatial measures are characterized in two
ways, namely: (a) measures representing a geometry, which can be aggregated

3 http://www.kheops-tech.com/en/jmap/solap.jsp.

http://www.kheops-tech.com/en/jmap/solap.jsp
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along the dimensions; (b) numerical measures, calculated using a topological or
metric operator. Most proposals support option (a), either as a set of coordinates
[15,9], or a set of pointers to geometric objects [19]. Da Silva et al. [17] intro-
duced GeoDWFrame, a framework for spatial OLAP, which classifies dimensions
in geographic and hybrid, depending on whether they represent only geographic
data, or geographic and non-spatial data, respectively. Over this framework, da
Silva et al. [18] propose GeoMDQL, a query language based on MDX and OGC4

simple features, for querying spatial data cubes.
It is worth noting that all the above conceptual models follow a tightly-coupled

approach between the GIS and OLAP components, where the spatial objects are
included in the data warehouse. On the contrary, the Piet data model, introduced
by Gómez et al. [4], follows a loosely-coupled approach, where GIS data and
data warehouse data are maintained separately, a matching function bounding
the two components. Piet supports the notion of geometric aggregation, that
characterizes a wide range of aggregate queries over regions defined as semi-
algebraic sets, addressing four kinds of queries: (a) standard GIS queries; (b)
standard OLAP queries; (c) geometric aggregation queries; and (d) integrated
GIS-OLAP queries. OLAP-style navigation is also supported in the latter case.
Recently, an SQL-like query language was proposed for Piet, denoted Piet-QL.
This language, in addition to query types (a) to (d), allows expressing GIS
queries filtered by a data cube (i.e., filtered by aggregated data)5.

Pourabas [13] introduced a conceptual model that uses binding attributes to
bridge the gap between spatial databases and a data cube. No implementation
of the proposal is discussed. Besides, this approach relies on the assumption that
all the cells in the cube contain a value, which is not the usual case in practice.
Moreover, the approach also requires modifying the structure of the spatial data.

Traditional data warehouses and OLAP system do not support the evolution
of dimension data. Temporal data warehousing cope with this issue. Mendelzon
and Vaisman [10] proposed a model, denoted TOLAP, and developed a prototype
and a Datalog-like query language, based on a temporal star schema. In this
model, changes to the structure and/or the instances of the dimension tables are
supported, using the concept of transaction and valid time, respectively. Some
structural changes also yield different fact table versions. Also, Eder et al. [2]
propose a data model for temporal OLAP supporting structural changes.

In order to support spatio-temporal data, a data model and associated query
language is needed for supporting moving objects, i.e., objects whose geometry
evolves over time. This is achieved in Hermes, a system introduced by Pelekis et
al. [12], and SECONDO [5], a system supporting the model of Güting et al. [6].
In spite of their ability to handle spatio-temporal data, neither SECONDO, nor
Hermes, are oriented toward addressing the problem of integrating GIS, OLAP,
and moving objects. However, in this paper we use many concepts underlying
SECONDO, to present our approach. Vega López et al. [20] present a compre-
hensive survey on spatio-temporal aggregation.

4 Open Geospatial Consortium http://www.opengeospatial.org
5 A Piet-QL demo can be found at http://piet.exp.dc.uba.ar/pietql.

http://www.opengeospatial.org
http://piet.exp.dc.uba.ar/pietql
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The work by Orlando et al. [11] introduces the concept of trajectory data
warehouses, aimed at providing the infrastructure needed to deliver advanced
reporting capabilities and facilitating the use of mining algorithms on aggregate
data. This work is also based on the Hermes system. A relevant feature of this
proposal is the treatment given to the ETL (Extraction, Transformation and
Loading) process, which transforms the raw location data and loads it to the
trajectory data warehouse.

3 Preliminaries

3.1 Extending the Conceptual Model

Throughout the paper we use the following real-world example. The Environ-
mental Control Agency of a country has a collection of water stations measuring
the value of polluting substances at regular time intervals. The application has
maps describing rivers, water stations, and the political division of the country
into provinces and districts.
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Fig. 1. An example of a spatial data warehouse.

Figure 1 shows the conceptual schema depicting the above scenario using
the MultiDim model [9]. There is one fact relationship, WaterPollution, to which
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several dimensions are related. The fact relationship WaterPollution has two mea-
sures, commonArea and load, and is related to five dimensions: Time, Station, Pol-
lutant, River, and District. Dimensions are composed of levels and hierarchies. For
example, while the Station dimension has only one level, the District dimension
is composed of two levels, District and Province, with a one-to-many parent-child
relationship defined between them.

In the MultiDim model the spatiality of elements is indicated by pictograms.
For example, Station, River, and District are spatial levels; they have a geometry
represented by a point, a line, and a region, respectively. Similarly, the attribute
capital in Province, as well as the measures commonArea in the three fact re-
lationships are spatial. Finally, topological relationships may be represented in
fact relationships and in parent-child relationships. For example, the topological
relationship in WaterPollution indicates that whenever a water station, a river,
and a district are related in an instance of the relationship, they must over-
lap. Similarly, the topological relationship in the hierarchy of dimension District
indicates that a district is covered by its parent province.

To address spatio-temporal scenarios we borrow the data types defined by
Güting et al. [6]. We refer to this work for the complete definition of the type
system and the corresponding operations. There is a set of base types which are
int, real, bool, string, and an identifier type id, which is used for the identifiers of
level members. There are also time types which are instant and periods, the latter
being a set of time intervals. There are four spatial data types, point, points, line,
and region. A value of type point represents a point in the Euclidean plane. A
points value is a finite set of points. A line value is a finite set of continuous
curves in the plane. A region is a finite set of disjoint parts called faces, each of
which may have holes. It is allowed that a face lies whith a hole of another face.

Moving types capture the evolution over time of base types and spatial types.
Moving types are obtained by applying a constructor moving(·). Hence, a value
of type moving(point) is a continuous function f : instant → point. Moving types
have associated operations that generalize those of the non-temporal types. This
is called lifting. For example, a distance function with signature moving(point)×
moving(point) → moving(real) calculates the distance between two moving points
and gives as result a moving real, i.e., a real-valued function of time. Intuitively,
the semantics of such lifted operations is that the result is computed at each
time instant using the non-lifted operation. Definition 1 summarizes the concepts
discussed above.

Definition 1 (Data types). We denote Γ a set of nontemporal types, composed
of a set of base types β, a set of time types τ , and a set of spatial types ξ. There
is also a set of temporal types Φ, composed of two sets of temporal types φβ

and φξ, obtained by applying the moving constructor to elements of β and ξ,
respectively.

3.2 Spatio-Temporal Calculus

For addressing the issue of querying data warehouses, we use a relational repre-
sentation of the MultiDim conceptual model. A dimension level is represented
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by a relation of the same name, having an implicit identifier attribute denoted
id, an implicit geometry attribute (if the level is spatial), in addition to the other
explicitly indicated attributes. The id attribute (e.g., River.id) identifies a par-
ticular instance of the dimension. Dimension levels involved in hierarchies (e.g.,
District) have also an additional attribute containing the identifier of the parent
level (e.g., District.province), and there is a referential integrity constraint for
such attributes and the corresponding parent (e.g., Province.id).

A fact relationship is represented by a relation of the same name having an
implicit id attribute, one attribute for each dimension, and one attribute for
each measure. There is a referential integrity constraint between the dimension
attributes in the fact relationship (e.g., WaterPollution.district) and the identifier
of the corresponding dimension (e.g., District.id).

We use a query language based on the tuple relational calculus (e.g., [3])
extended with aggregate functions and variable definitions6. We explain this
language through an example. Consider the following relations from the data
warehouse shown in Fig. 1.

District(id, geometry, districtName, population, area, . . . , province)
Province(id, geometry, provinceName,majorActivity, capital, governor, . . .).

The following query asks the name and population of districts of the Antwerp
province.

{d.districtName, d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.provinceName = ‘Antwerp’)}

Suppose that we want to compute the total population of districts of the Antwerp
province. A first attempt to write this query would be:

sum({d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.provinceName = ‘Antwerp’)})

Notice that however, since the relational calculus is based on sets (i.e., collections
with no duplicates), if two districts of the Antwerp province happen to have the
same population, they would appear only once in the set to which the sum
operator is applied. As in Klug’s approach [8], this is solved by using aggregate
operators that take as argument a set of tuples (instead of a set of values) and
that specify on which column the aggregate operator must be applied. Therefore,
the above query is more precisely written as follows.

sum2({d.id, d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.provinceName = ‘Antwerp’)}

In this case, the sum operator is applied to a set of pairs 〈id, population〉 and
computes the sum of the second attribute.
6 Even though languages for OLAP manipulation exist (e.g., [14]), the choice of a

relational calculus is motivated by the fact that it applies to the classical relational
model, thus providing a clean and elegant way for our purpose of defining different
Spatio-temporal OLAP models and languages.
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Finally, suppose we want to calculate the total population by province pro-
vided that it is greater than 100,000. In this case we need a recursive definition
of queries and variables that bind the results of inner queries to outer queries.
The latter query is written as follows.

{p.name, totalPop | Province(p)∧
totalPop = sum2({d.id, d.population | District(d) ∧ d.province = p.id})∧
totalPop > 100, 000 }

Here, the outer query fixes a particular province p and the inner query collects
the population of districts for that province. The sum of these populations is
then bound to the variable totalPop. Notice that this query corresponds to an
SQL query with the GROUP BY and HAVING clauses.

Proposition 1. Let us denote Ragg the relational calculus with aggregate func-
tions defined above, over the basic sets of data and time types β and τ , respec-
tively. Ragg has the same expressive power of the relational calculus extended
with aggregate functions defined in [8].

The idea of the proof follows from the fact that Ragg is a syntactic variation
of Klug’s calculus. We show later in the paper how we extend Ragg to support
spatial and moving data types in order to define a hierarchy of classes of spatio-
temporal queries, starting from the expressive power of Ragg.

4 A Taxonomy for Spatio-Temporal OLAP

Existing proposals for spatial data warehousing cover different functional re-
quirements, but, with limited exceptions, there is no clear specification of the
kinds of queries these proposals address. This is probably due to the fact that
no taxonomy for these systems has been defined so far. When we talk about
GIS, we often refer to static GIS, i.e., GIS where the geometry of objects does
not change over time. On the other hand, when we talk about OLAP or data
warehousing, we assume static data warehousing, i.e., data warehouses where
dimensions do not change over time. Thus, the term SOLAP refers to the in-
teraction between static GIS and static data warehouses. The schema in Fig. 1
is an example of this approach. When time gets into play, things become more
involved, and only partial solutions have been provided. On the one hand, dif-
ferent models exist for temporal data warehousing, depending on the approach
followed to implement the warehouse. In this paper we define a temporal data
warehouse as a warehouse that keeps track of the history of the instances of the
warehouse dimensions, i.e., we assume there is no structural (schema) changes.
The reason for this is that, as far as we know, only academic implementations
of fully temporal data warehouses exist.

We define a taxonomy for spatio-temporal OLAP as follows (see Fig. 2). We
start by considering four basic classes: Temporal dimensions, OLAP, GIS, and
moving data types. As a derived basic class, adding moving data types to GIS
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Fig. 2. A taxonomy for spatio-temporal data warehousing.

produces Spatio-Temporal Data, typically allowing trajectory analysis in a ge-
ographic environment. Providing OLAP with the ability of handling temporal
dimensions produces the concept of Temporal OLAP (TOLAP). The interaction
of OLAP and GIS is denoted Spatial OLAP (SOLAP). The interaction between
GIS and TOLAP is called Spatial TOLAP (S-TOLAP). Adding OLAP capa-
bilities to spatio-temporal data results in Spatio-Temporal OLAP (ST-OLAP).
Finally, if the latter supports temporal dimensions we have Spatio-Temporal TO-
LAP (ST-TOLAP).

5 Queries

In this section, we define the kinds of queries that should be supported for each
one of the classes in the taxonomy of Fig. 2.

5.1 OLAP and Spatial OLAP Queries

We start by showing examples of OLAP queries.

Q1. For water stations located in districts of the Limburg province and polluting
agents of organic category give the maximum load by month.

{s.name, p.name,m.month,maxLoad | Station(s) ∧ Pollutant(p) ∧
Month(m) ∧ ∃c (Category(c) ∧ p.category = c.id ∧ c.name = ‘Organic’) ∧
maxLoad = max1({w.load | WaterPollution(w) ∧ w.station = s.id ∧

w.pollutant = p.id ∧ ∃d,∃v, ∃t ( District(d) ∧ Province(v) ∧
Time(t) ∧ w.district = d.id ∧ d.province = v.id ∧
v.name = ‘Limburg’ ∧ w.time = t.id ∧ t.month = m.id)})}

Q2. For each river, give the total number of stations where, for at least one
pollutant, the average load in March 2008 was greater than the load limit
for this pollutant.
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{r.name, nbStations | River(r) ∧
nbStations = count({s.id | Station(s) ∧ ∃p (Pollutant(p) ∧
avg2({w.id, w.load | WaterPollution(w) ∧ w.river = r.id ∧
w.station = s.id ∧ w.pollutant = p.id ∧ ∃t(Time(t) ∧ w.time = t.id ∧
t.date ≥ 1/3/2008 ∧ t.date ≤ 31/3/2008)}) > p.loadLimit)})}

Definition 2 (OLAP queries). Let us call Ragg the relational calculus with
aggregate functions defined in Section 3.2. The class of OLAP queries includes
all the queries that are expressible by Ragg.

We give next some examples of SOLAP queries.

Q3. Total population in the districts within 3Km from the Ghent district that
are crossed by the Schelde river.

sum2({d1.id, d1.population | District(d1) ∧ ∃d2,∃r(District(d2) ∧ River(r) ∧
d2.name = ‘Ghent’ ∧ distance(d1.geometry, d2.geometry) < 3 ∧
r.name = ‘Schelde’ ∧ intersects(d1.geometry, r.geometry))})

Note that this query do not use a fact relationship. The function distance
verifies that the geometries of the two districts are less than 3Km from each
other and the predicate intersects verifies that the district is crossed by the
river.

Q4. Stations located over the part of the Schelde river that flows through the
Antwerp province, with an average content of nitrates in the last quarter of
2008 above the load limit for that pollutant.

{s.name | Station(s) ∧ ∃r,∃p, ∃l, ∃c (River(r) ∧ Province(p)∧
Pollutant(l) ∧ Category(c) ∧ r.name = ‘Schelde’ ∧ p.name = ‘Antwerp’ ∧
inside(s.geometry, intersection(r.geometry, p.geometry)) ∧
l.category = c.id ∧ c.name = ‘Nitrates’x ∧
avg2({w.id, w.load | WaterPollution(w) ∧ w.station = s.id ∧

w.pollutant = l.id ∧ ∃t (Time(t) ∧ w.time = t.id ∧
t.date ≥ 1/10/2008 ∧ t.date ≤ 31/12/2008)}) > l.loadLimit)}

Here, the intersection of the river and the district is computed, and then it
is verified that the geometry of the station is located inside this intersection.

Definition 3 (SOLAP queries). Let us call Rξ
agg the language Ragg aug-

mented with spatial types in ξ. The class of SOLAP queries is the class composed
of all the queries that can be expressed by Rξ

agg.

5.2 Temporal OLAP Queries

The notion of Temporal OLAP (TOLAP) arises when evolution of the dimension
instances in the data warehouse is supported, a problem also referred to as slowly-
changing dimensions [7].

This evolution is captured by using temporal types. In other words, when at
least one of the dimensions in the data warehouse includes a type in the set φβ

of Definition 1, we say that the warehouse supports the TOLAP model.
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To define TOLAP queries, we modify our running example in Fig. 1 making
the dimension Pollutant temporal, as shown in Fig. 3. Temporal levels are identi-
fied by the LS pictogram. In our example, the level Pollutant is temporal, which
means that a new pollutant may start to be monitored from a particular date.
Temporal levels have a predefined attribute called lifespan, of type moving(bool),
which keeps track of the validity of a member at each instant. Temporal attributes
are identified by the VT pictogram. In our example, the attribute loadLimit is
temporal, meaning that the load limit varies across time.

Temporal attributes are defined over temporal types, for example, mov-
ing(real) for the attribute loadLimit. Finally, temporal parent-child relationships
are indicated by the LS pictogram. In our example, the relationship between
Pollutant and Category is temporal, which means that the association of pollu-
tants to categories varies over time, e.g., at a particular date, a category can be
split into two. Temporal relationships are also represented by temporal types.
For example, the Pollutant level has an attribute category, of type moving(id),
which associates, at each time instant, a category to a pollutant.

Notice that the temporal multidimensional model assumes implicit constraints
that restrict the lifespan of the instances of temporal levels participating in fact
relationships or in temporal parent-child relationships. For example, an instance
of the fact relationship WaterPollution relates a time instant t and a pollutant p
provided that t is included in the lifespan of p. Similarly, a pollutant p is related
to a pollutant category c at instant t provided that t is included in the lifespan
of c. We consider the following queries.

Q5. For each province and pollutant category, give the average load of water
pollution by quarter.

{p.name, c.name, q.quarter, avgLoad | Province(p) ∧ Category(c)∧
Quarter(q) ∧ avgLoad = avg2({w.id, w.load | WaterPollution(w) ∧
∃d,∃t,∃m,∃l (District(d) ∧ Time(t) ∧ Month(m) ∧ Pollutant(l) ∧
w.district = d.id ∧ d.province = p.id ∧ w.time = t.id ∧
t.month = m.id ∧ m.quarter = q.id ∧ w.pollutant = l.id ∧
val(initial(atperiods(l.category, t))) = c.id)})}

In the last line of the above query, since the parent-child relationship is
represented by the temporal attribute category, we need to obtain the value of
this attribute at the time defined by the instance t of the Time dimension. As
the granularity of the Time dimension is day, function atperiods restricts the
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Fig. 4. A fact relationship with a spatio-temporal measure and a spatio-temporal
dimension.

temporal attribute to that day, function initial takes the first 〈instant, value〉
pair of the function, and function val returns the corresponding value. There
is no need to verify that the lifespan of the instances of Pollutant or Category
include the time t, since these constraints are implicity kept by the model.

Q6. Calculate by day the number of water stations that, for the pollutant ‘lead’,
had load greater than the maximum value (over its history) of the load limit.

{t.date, nbStations | Time(t) ∧ nbStations = count1({s.id | Station(s) ∧
∃w, ∃p (WaterPollution(w) ∧ Pollutant(p) ∧ w.time = t.id ∧
w.station = s.id ∧ w.pollutant = p.id ∧ p.pollutant = ‘Lead’ ∧
p.load > val(initial(atmax(p.loadLimit))))})}

In the query above, function atmax restricts the temporal attribute to the
time instants during which it has its maximum value, function initial takes
the 〈instant, value〉 pair of the first instant and function val obtains its value.

Definition 4 (TOLAP queries). Let us call Rφβ
agg the language Ragg aug-

mented with the data types in φβ . The class of TOLAP queries is the class
composed of all the queries that can be expressed by Rφβ

agg.

5.3 Spatio-Temporal OLAP Queries

Spatio-temporal OLAP (ST-OLAP) accounts for the case when the spatial ob-
jects evolve over time. For this, we need to consider moving types defined by
moving(α) where α is a spatial data type.

In order to define ST-OLAP queries, we add the fact relationship shown in
Fig. 4 to our running example in Fig. 1. The Cloud dimension refers to clouds
generated by industrial plants. Both the Cloud level and the commonArea mea-
sure have a geometry that is a moving region, indicated by the symbol ‘m’.
Notice that commonArea is a derived measure, i.e., in an instance of the fact
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relationship that relates a cloud c, a district d, and a date t, the measure keeps
the restriction of the trajectory of the cloud at that date and over that district.
This is computed by the expression at(atperiods(c.geometry, t), d). Notice also
that the Cloud dimension is related to the Pollutant dimension, while in Fig. 1
the Pollutant dimension participates in the fact relationship.

We give next examples of ST-OLAP queries.

Q7. For each district and polluting cloud, give the duration of time when the
cloud passed over the district.

{d.name, c.number, dur | District(d) ∧ Cloud(c) ∧
dur = duration(deftime(at(c.geometry, d.geometry)))}

Function at selects the part of moving geometry that is over the district,
function deftime obtains the periods when this happens, and finally function
duration calculates the size of the corresponding periods.

Q8. For each district, give by month the total number of persons affected by
polluting clouds.

{d.name,m.month, totalNo | District(d) ∧Month(m) ∧
totalNo = area(union({traversed(p.commonArea) | AirPollution(p) ∧

p.district = d.id ∧ ∃t (Time(t) ∧ t.month = m.id)}))/
area(d.geometry)× d.population}

The inner query selects all facts relating a given district and a day of a
given month; then function traversed projects the moving geometry of the
commonArea measure over the plane. A union of all the regions thus obtained
yields the part of the district affected by polluting clouds during that month,
and the area of this region is then computed. Then, assuming a uniform
distribution of the population, we divide this by the total area of the district
and multiply that by its population.

Definition 5 (ST-OLAP queries). Let us call Rφξ
agg the language Ragg aug-

mented with spatial types in ξ, and moving spatial types in φξ. The class of
ST-OLAP queries is the class composed of all the queries that can be expressed
by Rφξ

agg.

Definition 5 captures the model of Orlando et al. [11] on trajectory data
warehousing, since, actually, such model aims at answering queries like “Total
number of trajectories in a square of a grid” and performing OLAP operations.

5.4 Spatial TOLAP Queries

Spatial TOLAP (S-TOLAP) covers the case when in addition to having spatial
objects and attributes in the data warehouse, the dimensions are also temporal.
As we have done in Sect. 5.2, we modify our running example in Fig. 1 so that
the dimension Pollutant is temporal, as shown in Fig. 3.

Q9. For each station located over the Schelde river, give the periods of time
during the last quarter of 2008 when the content of nitrates was above the
load limit for that pollutant.
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{s.name, periods | Station(s) ∧ ∃r (River(r) ∧ r.name = ‘Schelde’ ∧
inside(s.geometry, r.geometry) ∧ periods = union1({t.date | Time(t) ∧

∃w, ∃p,∃c (WaterPollution(w) ∧ Pollutant(p) ∧ Category(c) ∧
w.station = s.id ∧ w.time = t.id ∧ w.pollutant = p.id ∧
p.category = c.id ∧ c.name = ‘Nitrates’ ∧
t.date ≥ 1/10/2008 ∧ t.date ≤ 31/12/2008 ∧
w.load > val(atinstant(p.loadLimit, now)))}))}

As usual in temporal databases, a distiguished variable, ‘now’, represents the
(moving) current instant. Thus, the above query assumes that the compari-
son should be made with respect to the current value for the limit. Then, the
union operator takes a set of dates and construct a minimal set of disjoint
periods.

Q10. For each month in 2008, and for each water station in the province of Namur,
give the average Biological Oxygen Demand (BOD), if this average is larger
than the load limit during the reported month.

{m.month, s.name, avgBOD | Month(m) ∧ Station(s) ∧ ∃q, ∃y, ∃p, ∃l (
Quarter(q) ∧ Year(y) ∧ Province(p) ∧ Pollutant(l) ∧m.quarter = q.id ∧
q.year = y.id ∧ y.year = 2008 ∧ p.name = ‘Namur’ ∧
inside(s.geometry, p.geometry) ∧ l.name = ‘BOD’ ∧
avgBOD = avg2({w.id, w.load | WaterPollution(w) ∧ ∃t (

Time(t) ∧ w.station = s.id ∧ w.time = t.id ∧
t.month = m.id ∧ w.pollutant = l.id)}) ∧

avgBOD > val(initial(atperiods(l.loadLimit,m.month))))}
In the last term above, function atperiods restrict the load limit to month
m, and then functions initial and val obtain the value of this attribute at
the first day of the month. This is compared with the average load of that
month in avgBOD.

Definition 6 (Spatial TOLAP queries). Let us callRξ,φβ
agg the languageRagg

augmented with spatial types in ξ and moving types in φβ . We denote S-TOLAP
the class of queries composed of all the queries that can be expressed by Rξ,φβ

agg .

5.5 Spatio-Temporal TOLAP Queries

Spatio-Temporal TOLAP (ST-TOLAP) is the most general case where there are
moving geometries and the dimensions vary over time. In our running example
in Fig. 1 this amounts to replace the temporal dimension Pollutant as in Fig. 3
and to include the AirPollution fact relationship in Fig. 4. An example of these
kinds of queries is the following.

Q11. Total number of days when the Gent district has been under at least one
cloud of carbon monoxide (CO) such that the average load in the cloud is
larger than the load limit at the time when the cloud appeared.

duration(union({t.date | Time(t) ∧ ∃p, ∃d,∃c, ∃l (AirPollution(p) ∧
District(d) ∧ Cloud(c) ∧ Pollutant(l) ∧ p.time = t.id ∧
p.district = d.id ∧ d.name = ‘Ghent’ ∧ p.cloud = c.id ∧
c.pollutant = l.id ∧ l.name = ‘CO’ ∧ p.load >
val(atinstant(l.loadLimit, inst(initial(at(c.lifespan, true))))))}))}
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To obtain the instant when a cloud appeared we use the functions at (to
restrict the lifespan of the cloud), initial and inst. Functions atinstant and val
return the value of the load limit at the instant when the cloud appeared.

Definition 7 (Spatio-Temporal TOLAP queries). Let us call Rξ,φξ,φβ
agg the

language Ragg augmented with spatial types in ξ, moving spatial types in φξ,
and moving types in φβ . We denote ST-TOLAP the class of queries composed
of all the queries that can be expressed by Rξ,φξ,φβ

agg .

6 Conclusion

In this paper, we have defined a conceptual framework that allows characterizing
the functionalities that must be supported by spatio-temporal data warehouses.
We have shown that such data warehouses result from the combination of GIS
and OLAP technologies, further extended with the support of temporal data
types. These data types allow to model both, geometries that evolve over time
(usually called moving objects), and evolving data warehouse dimensions.

To address the issue of querying spatio-temporal data warehouses, we have
defined an extension of the tuple relational calculus with aggregate functions.
We defined a taxonomy for spatio-temporal OLAP queries that, starting from
the class of traditional OLAP queries, incrementally adds features for defining
several classes of queries with increasing expressive power. This is realized by
extending the type system underlying the data warehouse and its associated
query language. Our taxonomy provides an elegant and uniform way to charac-
terize the features required by spatio-temporal data warehouses and to classify
the many different works addressing this issue in the literature.

This work constitutes a first step aiming at defining spatio-temporal data
warehouses and therefore many issues remain to be addressed. As we have men-
tioned above, our framework is defined at a conceptual level and therefore we
have omitted any implementation consideration. However, as can be expected,
spatio-temporal data warehouses contain huge amounts of data, and therefore
optimization issues are of paramount importance. These issues range from appro-
priate index structures, through pre-aggregation, to efficient query optimization.
With respect to the latter issue, our example queries can be expressed in several
ways, exploiting either the fact relationship or directly the moving geometries.
Although from a formal perspective these alternative queries are equivalent, since
they yield the same result, the evaluation time of these queries may vary signi-
ficatively, depending on the actual population of the data warehouse. Therefore,
the translation of our conceptual model into logical and physical models is still
another further work.
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