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Abstract: Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial 
analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has  been 
focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance 
over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and 
conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving 
SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the 
star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 
99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied 
to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. 
The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. 
Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 
0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This 
enhancement improved performance from 80 to 91% for redundant GDW schemas. 
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1. Introduction 
Although Geographic Information Systems (GIS), Data 

Warehouse (DW) and On-Line Analytical Processing (OLAP) 
have different purposes, all of them converge in one aspect: 
decision-making support. Some authors have already 
proposed they be integrated in a Geographic Data Warehouse 
(GDW) to provide a means for carrying out spatial analyses 
combined with agile and flexible multidimensional analytical 
queries over huge data volumes6, 14, 26, 27. However, little effort 
has been devoted to investigating the following issue: How 
does spatial data redundancy affect query response time 
and storage requirements in a GDW? 

Similarly to a GIS, a GDW-based system manipulates 
geographic data with geometric and descriptive attributes, 
and also supports spatial analyses and ad hoc query windows. 
Like a DW12, a GDW is a subject-oriented, integrated, time-
variant and non-volatile dimensional database, which is 
often organized in a star schema with dimension and fact 
tables. A dimension table contains descriptive data and 

is typically designed in hierarchical structures in order to 
support different levels of aggregation. A fact table addresses 
numerical, additive and continuously valued measuring 
data, and maintains dimension keys at their lowest granu-
larity level and one or more numeric measures as well. In 
fact, a GDW stores geographic data in one or more dimen-
sions or in at least one measure of the fact table6, 14, 26, 27, 30. An 
example of star-schema with spatial attributes is shown in 
Figure 1 (Section 4.1).

While OLAP is the technology that provides strategic 
multidimensional queries over the DW, spatial OLAP 
(SOLAP) provides analytical multidimensional queries based 
on spatial predicates that mostly run over GDW2, 6, 12, 25, 27. 
Typical types of spatial predicates are intersection, enclo-
sure and containment7. The spatial query window is often an 
ad hoc area, not predefined in the spatial dimension tables.

Attribute hierarchies in dimension tables lead to an 
intrinsically redundant schema, which provides a means of 
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executing roll-up and drill-down operations. These OLAP 
operations perform data aggregation and disaggregation, 
according to higher and lower granularity levels, respectively. 
Kimball and Ross12 stated that a redundant DW schema is 
preferable to a non-redundant one, since the former does not 
introduce new join costs and the attributes assume conven-
tional data types that require only a few bytes. On the other 
hand, in GDW it may not be feasible to estimate the storage 
requirements for a spatial object represented by a set of 
geometric data30. Also, evaluating a spatial predicate is much 
more expensive than executing a conventional one7.

Hence, choosing between a redundant and a non-redun-
dant GDW schema may not lead to the same option as for 
conventional DW. This indicates the need for an experimental 
evaluation approach to aid GDW designers in making this 
choice. In this paper, we investigate spatial data redundancy 
effects in SOLAP query performance over GDW. 

The contributions of this paper are as follows:
•	 we	analyze	if	a	redundant	schema	aids	SOLAP	query	

processing in a GDW, as it does for OLAP and DW;

•	 we	 address	 the	 indexing	 issue	 with	 the	 purpose	 of	
improving SOLAP query processing on a redundant 
GDW;

•	 we	 investigate	 the	 performance	 of	 SOLAP	 queries	
that have one spatial query window. These queries are 
defined over different spatial predicates (i.e., intersec-
tion, enclosure and containment) and are applied to 
roll-up and drill-down operations;

•	 we	 analyze	 the	 performance	 of	 SOLAP	 queries	 that	
have two spatial query windows. These queries are 
defined over the intersection spatial predicate and are 
applied to roll-up and drill-down operations; and

•	 We	 investigate	 the	 impact	 of	 the	 increase	 in	 data	
volume with respect to redundant and non-redundant 
GDW schemas.

This paper is organized as follows. Section 2 discusses 
related work, Section 3 defines SOLAP queries, Section 
4 describes the experimental setup, and Section 5 shows 
performance results for redundant and non-redundant 
GDW schemas, using database systems resources. Section 6 
describes indices for DW and GDW, including our SB-index 
structure proposal. Section 7 details the experiments 
involving the SB-index for redundant and non-redundant 
GDW schemas, Section 8 investigates the impact of the 
increase in data volume on the performance of SOLAP query 
processing, and Section 9 proposes an enhancement of the 
SB-index that deals efficiently with spatial data redundancy. 
Section 10 concludes the paper.

2. Related Work 
Stefanovic et al.30 were the first to propose a GDW frame-

work that addresses spatial dimensions and spatial measures. 
The authors proposed that in a spatial-to-spatial dimension 
table, all the levels of an attribute hierarchy should maintain 
geometric features representing spatial objects. However, 

by focusing solely on the selective materialization of spatial 
measures, the authors do not discuss the effects of such 
redundant schema.

Fidalgo et al.6 foresaw that spatial data redundancy might 
deteriorate SOLAP query performance over GDW. To over-
come this issue, they proposed a framework for designing 
geographic dimensional schemas that strictly avoid spatial 
data redundancy. The authors also validated their proposal 
by adapting a DW schema for a GDW. However, they did 
not determine whether the non-redundant schema performs 
SOLAP queries better than redundant ones. 

Sampaio et al.26 proposed a logical multidimensional 
model to support spatial data on GDW and investigated 
query optimization techniques to enhance the performance 
of SOLAP queries. Nevertheless, they did not address the 
issue of spatial data redundancy, but simply reused the afore-
mentioned spatial-to-spatial dimension tables introduced by 
Stefanovic et al.30. 

As far as we know, none of the related work outlined in this 
section has experimentally investigated the effects of spatial 
data redundancy in GDW, nor examined if this issue really 
affects the performance of SOLAP queries. Furthermore, to 
the best of our knowledge, there is no other related work that 
focus on this issue. This experimental evaluation is therefore 
the main objective of our work.

A preliminary version of this work was presented in28. 
In this paper, we extend our experimental evaluation by 
examining the performance of SOLAP queries defined over 
the spatial predicates of intersection, enclosure, and contain-
ment. In particular, we additionally issue queries with two 
windows for the intersection predicate. We also investigate 
the impact of increasing data volume on redundant and non-
redundant GDW schemas.

3. SOLAP Queries

The term SOLAP refers to environments that focus on GIS 
and OLAP functionalities. It therefore denotes the integration 
of geographic and multidimensional analytical processing. 
The main objective is to provide an open, extensible envi-
ronment with functionalities for manipulation, queries and 
analysis not only of conventional data but also of geographic 
data25, 27. These data are stored together in GDW.

Our GDW data model is based on two sets of tables, 
dimension tables and fact tables, in which each column is asso-
ciated to a given data type. We assume that there are two finite 
sets of data types: i) basic types (TB), such as integer, real and 
string; and ii) geographic types (TG), whose elements are point, 
line, polygon, set of points, set of lines and set of polygons. Some 
formal definitions for our GDW are given as follows.

Definition 1 (Dimension Table). A dimension table is an 
n-ary relation defined over K × S1×... × Sr × A1 ×... × Am × G1 
×... × Gp, so that:

(i) n = 1 + r + m + p;

(ii) K is a set of attributes representing the dimension 
table’s primary key;
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(iii) each Si, 1 ≤ i ≤ r is a set of foreign keys for other dimen-
sion tables;

(iv) each column Aj (called an attribute name or simply 
attribute), 1 ≤ j ≤ m, is a set of attribute values of type 
TB; and

(v) each column Gk (named geometry), 1 ≤ k ≤ p, is a set 
of geometric attribute values (or simply geometric 
values) of type TG.

Definition 2 (Fact Table). A fact table is an n-ary relation 
over K × A1×...× Am × M1 ×...Mr × MG1 ×... × MGq, so that:

(i) K is a set of attributes representing the table’s primary 
key, composed of S1 × S2 ×... × Sp, where each 
Si (1 ≤ i ≤ p) is a foreign key for a dimension table;

(ii) n = p + m + r + q;

(iii) each attribute Aj (1 ≤ j ≤ m), is a set of attribute values 
of type TB;

(iv) each column Mk, (1 ≤ k ≤ r) is a set of measures of type 
TB; and

(v) each column MGl (1 ≤ l ≤ q) is a set of measures of type 
TG.

Rigaux et al.24 classify the operators on spatial data into 
seven groups according to the operator interface, i.e., the 
number of arguments and type of return. These groups 
are: (i) unary with a Boolean result; (ii) unary with a scalar 
result; (iii) unary with a spatial result; (iv) n-ary spatial result; 
(v) binary with a scalar result; (vi) binary with a Boolean 
result; and (vii) binary spatial result. For each of these groups, 
examples of operators are: (i) if the object is convex; (ii) area, 
perimeter, length; (iii) buffer zone, centroid; (iv) clipping of 
geographic objects; (v) union, intersection and difference; 
(vi) intersects, contains (or enclosure), it is contained (or 
containment); and (vii) distance. In this paper, our emphasis 
is on the operators described in the examples of group vi.

In OLAP, traditional operations include aggregation 
and disaggregation (roll-up and drill-down), selection and 
projection (pivot, slice and dice)9, 33, 34. Other examples include 
operations for navigation in the structure of the data cube, 
such as the operators: all, members, ancestor and children 
of the MDX language32. In this paper, the emphasis is on the 
aggregation and disaggregation operators. Before formally 
defining these operators, we will present our mathematical 
definition for a data cube, on which the attribute hierarchies 
of roll-up and drill-down operations will be represented.

Definition 3 (Level). A GDW schema is a tuple 
GDW = (DT, FT), where DT is a non-empty finite set of dimen-
sion tables and FT is a non-empty finite set of fact tables. 
Thus, given a GDW, a level l is an attribute of a dt ∈ DT or of 
a ft ∈ FT.

Definition 4 (Dimension Schema). Given a geographic 
data warehouse GDW = (DT, FT), a dimension schema DS is 
a partially ordered set (X ∪ {All}, ≤), in which:

(i) X is a set of levels or X is a set of attributes or geometric 
values in a dt ∈ DT or in a ft ∈ FT;

(ii) ≤ defines the relationship between the elements of X; 
and

(iii) All is an additional value, which is the largest element 
of the partially ordered set (X ∪ {All}, ≤), i.e., x ≤ All 
for all x ∈ X.

Definition 5 (Hierarchy). Given a dimension schema 
DS = (X ∪ {All}, ≤), a hierarchy h = (S, ≤) is a chain in DS, 
where S ⊆ X ∪ {All}. This means that a hierarchy h is a totally 
ordered subset of a DS. If all the elements of S are of type TG, 
then we say that h is a geographic hierarchy.

To formally define a data cube, the aggregation process 
is executed by a function f that gets a multiset R built from 
the columns of a fact table ft ∈ FT, generating a single value. 
A projection over ft cannot be used to define the domain of 
f, since a projection does not have duplicates. Therefore, we 
have used a multiset as the domain of f. In addition to the 
columns, the rows of the fact table in which f is applied are 
defined from the levels, attribute values or geometric values 
of a set of dimensions D. Thus, to define the domain of f, we 
must first introduce an operation, called a Fact Projection, 
which produces a multiset P. This operation returns a mult-
iset of tuples instead of a relation (i.e., a set of tuples) as a 
result.

We then define f as a partial function whose domain is a 
fact table ft ∈ FT, and the definition domain is a multiset of 
tuples R built from the columns and rows of ft in which f is 
applied.

Definition 6 (Fact Projection). Given a fact table ft : 
K × A1×...× Am × M1×... Mr × MG1 ×...× MGq, in which K, the 
set of attributes representing a primary key, is S1 × S2 ×... × Sp 
and n = p + m + r + q, as shown in definition 2. A fact projection 
ϕs1,...,sx,a1...ay,m1...mz,mg1...mgw (1 ≤ x ≤ p, 1 ≤ y ≤ m, 1 ≤ z ≤ r, 1 ≤ w ≤ q) maps 
the n-tuples ft into a multiset of l-tuples, in which l = x + y + z + w 
and l ≤ n.

Definition 7 (Aggregation Function). An aggregation 
function fi ∈ Fg, a countable set Fg = {f1, f2,...}, is a partial func-
tion fi : ft → V ∪ ⊥ in which:

(i) ft : K × A1 ×... × Am × M1 ×... × Mr × MG1 ×... × MGq is 
a fact table in which fi is applied, and K is S1 × S2 ×... 
× Sp;

(ii) V is a set of values of type TB or TG; and

(iii) the definition domain of fi is given as follows:

(1) Consider P = ϕs1,...,sx,a1...ay,m1...mz,mg1...mgw a fact projection 
over ft, in which 1 ≤ x ≤ p, 1 ≤ y ≤ m, 1 ≤ z ≤ r and 
1 ≤ w ≤ q;

(2) Consider D as a set of dimensions; then

(3) R is a multiset of l-tuples of P that are derived from 
levels, attribute values or geometric values of D.

For the elements of ft in which fi is undefined, they are 
mapped to ⊥.

Definition 8 (Data Cube). A data cube (or simply cube) C 
is a 3-tuple < D, ft, f > where:

(i) D is a set of dimensions;

(ii) ft is a fact table;

(iii) f: ft → V ∪ ⊥ is an aggregation function that is applied 
to define the facts of C; and
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(iv) the dimension of cube C is equal to |D|, i.e., the 
cardinality of D. If |D| = n, and we use the notation 
Cn to denote the dimension of C. If D has at least a 
level of type TG, then we say that C is a geographic 
data cube, denoted here by GC, whose dimension is 
given by GCn.

Definition 9 (Roll-up Operation). Roll-up is an oper-
ation that produces a geographic cube GC´ from the 
4-tuple < GC = < D, ft, f >, D´, h(S, ≤), (x,y)>, where:

(i) D´∈ D; 

(ii) h is a geographic hierarchy in D´; and

(ii) x, y ∈ S ∧ x ≤ y, so that x is the current granularity level 
x and y is the selected granularity level. 

The drill-down operation may be similarly defined 
according to the formal definition given above. The only 
difference is that for the drill-down operation, the current 
granularity level x and the selected granularity level y are 
represented by an ordered pair (x,y) | x, y ∈ S ∧ x ≥ y.

Definition 10 (Drill-down/Roll-up SOLAP Query). 
Given a geographical data cube GC0

n. A drill-down/rollup 
SOLAP Query creates another geographical data cube GCk 

from a sequence of operations Qk° Ok, 1 ≤ k ≤ no, where no 
(1 ≤ no ≤ n) is the number of the operations Qk° Ok, and each 
Qk° Ok is a composition of the operations Qk with Ok as 
following described:

(i) Ok is either a drill-down or roll-up operation which 
produces a GCk´ from the 4-tuple < GCk-1= < Dk-1, ftk-1, 
fl-1 >, Dk-1´, hk-1(Sk-1, ≤), (xk-1,yk-1)>;

(ii) Qk is an operation that creates another geographical 
data cube GCk from the 4-tuple < GCk´, yk-1, Wk, Pk > 
where;

a. GCk´ is the result of the operation Ok; 

b. yk-1 is the selected granularity level given as an input 
parameter for the operation Ok;

c. Wk is a query window;

d. Pk is a predicate that is verified with regards to the 
elements of Wk and attribute values of the level yk-1.

According to Silva et al.27, there is a set of 21 classes of 
SOLAP queries obtained from the Cartesian product between 
the OLAP and the above described spatial operations. In this 
paper, we focus on four types of Drill-down/Roll-up SOLAP 
query, which are described below and based on the formal 
definitions given previously.

•	 Type	1:	in	this	case	we	have	determined	that:	(i)	no = 1 
(i.e. there is just one operation Q° O); and (ii) P is a spatial 
predicate of intersection. In other words, this type of 
query consists of a drill-down/roll-up with a query 
window that tests the spatial predicate of intersection. 
For example, “retrieve the total of sales per year and 
per supplier whose supplier city intersects a query 
window”.

•	 Type	2:	here	we	have	defined	that:	(i)	no = 1; and (ii) P 
is a spatial predicate “it is contained”. That is to say, 
this type of query consists of a drill-down/roll-up 
with query window that tests the spatial predicate 

“it is contained”, or simply “of containment”. For 
example, “retrieve the total sales per year and per 
supplier whose supplier city is contained in a query 
window”.

•	 Type	3:	for	this	case,	we	have	established	that:	(i)	no = 1; 
and (ii) P is a spatial predicate “contains”. This means 
a drill-down/roll-up with a query window that tests 
the spatial predicate “contains”, or simply “of enclo-
sure”. For example, “retrieve the total sales per year 
and per supplier whose supplier region contains a 
query window”.

•	 Type	4:	we	have	now	concluded	that:	(i)	no = 2; and 
(ii)  each Pk (1 ≤  k ≤  2) is a spatial predicate of inter-
section. This implies a drill-down/roll-up with two 
query windows that test the spatial predicate of 
intersection. For example, “retrieve the total sales per 
year and per supplier of an area x to the customers of 
an area y”. In this query, the suppliers of area x are 
suppliers whose city intersects a query window J1, 
while the customers in area y are customers whose 
city intersects a query window J2.

These queries were chosen because they are typically 
found in GDW environments. Moreover, they follow the 
specification of the Star Schema Benchmark (SSB)18, which 
is the standard benchmark for the analysis of DW perform-
ance modeled according to the star schema. The SQL 
commands related to the four types of queries are described 
in Section 4.2.

4. Experimental Setup 

This section describes the workbench (Section 4.1) and 
the workload (Section 4.2) used in the performance tests. 

4.1. Workbench

Experiments were conducted on a computer with a 2.8 GHz 
Pentium D processor, 2 GB of main memory, a 7200 RPM 
SATA 320 GB hard disk, Linux CentOS 5.2, PostgreSQL 8.2.5 
and PostGIS 1.3.3. We chose the PostgreSQL/PostGIS data-
base management system (DBMS) because it is a well-known 
and efficient open source DBMS. 

We also adapted the SSB18 to support GDW spatial 
analysis, since its spatial information is strictly textual and 
stored in the dimensions Supplier and Customer. SSB is 
derived from TPC-H22. The changes preserved descriptive 
data and created a spatial hierarchy based on the previ-
ously defined conventional dimensions. Both the dimension 
tables Supplier and Customer have the following hierarchy: 
region  nation  city  address. While the domains of the 
attributes s_address and c_address are disjointed, Supplier 
and Customer share city, nation and region locations as 
attributes. A detailed discussion of spatial hierarchies can 
be found in15, 16, 23. 

The following two GDW schemas were developed to 
investigate to what extent SOLAP queries performance is 
affected by spatial data redundancy. According to Stefanovic 



23The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

et al. 30, Customer and Supplier are spatial-to-spatial dimen-
sions and may maintain geographic data, as shown in 
Figure 1. Attributes with the suffix “_geo” store the geometric 
data of geographic features, and there is spatial data redun-
dancy. For instance, a map of Brazil is stored in every row 
whose supplier is located in Brazil. 

However, as stated by Fidalgo et al.6, in a GDW, spatial 
data must not be redundant and should be shared when-
ever possible. Thus, Figure 2 illustrates the dimension tables 
Customer and Supplier sharing city, nation and region 
locations, but not addresses. Note that this schema is not 
normalized, as the hierarchy region  nation  city  address 
does not represent a snowflake schema12. The characteristic 
of this hybrid schema is that it stores the geometries of the 
dimension tables in separate geometry tables. For instance, 
the table City represents the geometry for both tables 
Customer and Supplier. We chose a hybrid schema instead of 
a snowflake to reduce join costs.

While the schema of Figure 1 is called GRSSB (Geographic 
Redundant SSB), the schema of Figure 2 is called GHSSB 
(Geographic Hybrid SSB). Both schemas were created 
using SSB’s database with a scale factor of 10. Data genera-
tion produced 60 million tuples in the fact table, 5 distinct 
regions, 25 nations per region, 10 cities per nation and a 
certain number of addresses per city varying from 349 to 455. 
Cities, nations and regions were represented by polygons, 
while addresses were expressed by points. All the geometries 
were adapted from Tiger/Line 5. GRSSB uses 150 GB, while 
GHSSB has 15 GB. 

4.2. Workload

Queries of types 1 to 3 (Section 3) were based on query 
Q2.3 of the SSB, while query type 4 (Section 3) was based on 
query Q3.3 of SSB. We replaced the underlined conventional 
predicates with spatial predicates involving ad hoc query 
windows (QW) (Figures 3, 4, 5 and 6). These quadratic query 
windows have a correlated distribution with spatial data, and 
their centroids are random supplier addresses. Their sizes are 
proportional to the spatial granularity.

The query windows allow for the aggregation of data 
at different spatial granularity levels, i.e., the application of 
spatial roll-up and drill-down operations. Figures 3 to 6 show 
how complete spatial roll-up and drill-down operations are 
performed. Both operations comprise four query windows of 
different sizes that share the same centroid.

Regarding query type 1 (i.e., drill-down/roll-up with one 
query window that verifies the intersection spatial relation-
ship), the Address level was evaluated with the containment 
relationship and its QW covers 0.001% of the extent. City, 
Nation and Region levels were evaluated with the intersec-
tion relationship and their QW cover 0.05, 0.1 and 1% of the 
extent, respectively. Figure 3 shows the SQL command for 
this query type. Table 1 shows the average number of distinct 
spatial objects returned per query type in each granularity 
level. In GRSSB, these average numbers are higher.

Address, City, Nation and Region levels of query type 2 
(i.e., drill-down/roll-up with one query window that verifies 
the containment spatial relationship) were evaluated with 
the containment relationship and their QW covers 0.01, 0.1, 
10 and 25% of the extent, respectively. Compared to query 
type 1, we enlarged the length of the QW for query type 2, 
aiming at ensuring the recovery of spatial objects for the 
containment relationship. Figure 4 shows the SQL command 
for this query type.

Supplier

s_suppkey
s_address
s_address_geo
s_city
s_city_geo
s_nation
s_nation_geo
s_region
s_region_geo

...

Date

d_datakey
d_year

...

lineorder

lo_orderkey
lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_commitdate
lo_revenue

...

Customer

c_custkey
c_address
c_address_geo
c_city
c_city_geo
c_nation

c_region
c_region_geo

c_nation_geo

...

p_partkey
p_brand1

...

Part

c_custkey
c_address
c_address_fk
c_city
c_city_fk
c_nation

c_region
c_region_fk

c_nation_fk

...

s_suppkey
s_address
s_address_fk
s_city
s_city_fk
s_nation

s_region
s_region_fk

s_nation_fk

...

p_partkey
p_brand1

...

Part

c_address_pk 
c_address_geo

...

c_address

s_address_pk
s_address_geo

...

s_address

d_datekey
d_year

...

Date

city_pk
city_geo

...

City

nation_pk
nation_geo

...

Nation

region_pk
region_geo

...

Region

lineorder

lo_orderkey
lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_commitdate
lo_revenue

...

Customer Supplier 

Figure 1. Adapted SSB with spatial data redundancy: GRSSB.

Figure 2. Adapted SSB without spatial data redundancy: GHSSB.

Table 1. Average number of distinct spatial objects returned per 
query type.

Query Address City Nation Region

Type 1 22.2 5.6 1.6 1.2
Type 2 190.4 1.4 1.4 0.4
Type 3 1.0 0.8 0.8 1.0
Type 4 - 13.0 - -
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As for query type 3 (i.e., drill-down/roll-up with one 
query window that verifies the enclosure spatial relationship), 
the Address level was evaluated with the containment rela-
tionship, and City, Nation and Region levels were evaluated 
with the enclosure relationship. Their QW covers 0.00001, 
0.0005, 0.001 and 0.01% of the extent, respectively. Compared 
to query type 1, we reduced the length of the QW for query 
type 3 in order to ensure the recovery of spatial objects for the 
enclosure relationship. Figure 5 shows the SQL command for 
this query type

Finally, query type 4 (drill-down/roll-up with two query 
windows that verify the intersection spatial relationship) 
possesses the same characteristics as query type 1. However, 
this query adds an extra high join cost to process the two 
spatial query windows. Figure 6 shows the SQL command for 
query type 4 and Figure 7 depicts the two query windows.

Further details about data and query distribution can be 
obtained at http://gbd.dc.ufscar.br/papers/jbcs09/figures.
pdf.

5. Performance Results and Evaluation 
Applied to the GDW Schemas 

In this section, we discuss the performance results of two 
test configurations based on the GRSSB and GHSSB schemas. 
These configurations reflect current available DBMS resources 
for GDW query processing, and are described as follows:

•	 C1:	star-join	computation	aided	by	R-tree	 index10 on 
spatial attributes.

•	 C2:	 star-join	 computation	 aided	 by	 GiST	 index8 on 
spatial attributes. 

Experiments were performed by submitting 5 complete 
roll-up operations to GRSSB and GHSSB and by taking the 
average of the measurements for each granularity level. The 
performance results were gathered based on the elapsed time 
in seconds. 

Sections 5.1 to 5.4 discuss performance results for query 
types 1, 2, 3 and 4, respectively. 

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 =  ‘MFGR#2239’
AND s_region = ‘EUROPE’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND INTERSECTS (City, QW)
AND INTERSECTS (Nation, QW)
AND INTERSECTS (Region, QW)

ROLL-UP

DRILL-DOWN

Figure 3. Adaption of SSB Q2.3 query for query type 1.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 =  ‘MFGR#2239’
AND s_region = ‘EUROPE’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND WITHIN (City, QW)
AND WITHIN (Nation, QW)
AND WITHIN (Region, QW)

ROLL-UP

DRILL-DOWN

Figure 4. Adaption of SSB Q2.3 query for query type 2.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 =  ‘MFGR#2239’
AND s_region = ‘EUROPE’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND CONTAINS (City, QW)
AND CONTAINS (Nation, QW)
AND CONTAINS (Region, QW)

ROLL-UP

DRILL-DOWN

Figure 5. Adaption of SSB Q2.3 query for query type 3.
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5.1. Results for query type 1

Table 2 shows the results of the performance in processing 
query type 1, according to the various levels of granularity. 

Fidalgo et al.6 foresaw that although a hybrid GDW 
schema introduces new join costs, it should require less 
storage space than a redundant one. Our quantitative experi-
ments confirmed this fact and also showed that SOLAP query 
processing is negatively affected by spatial data redundancy in 
a GDW. According to our results, the attribute granularity does 
not affect query processing in GHSSB. For instance, Region-
level queries took 2787.83 seconds in C1, while Address-level 
queries took 2866.51 seconds for the same configuration, a very 
small increase of 2.82%. Therefore, our experiments showed 
that star-join is the most costly process in GHSSB. 

On the other hand, as the granularity level increases, the 
time required to process a query in GRSSB becomes longer. For 
example, in C2, a query on the finest granularity level (Address) 
took 2831.23 seconds, while on the highest granularity level 
(Region) it took 6200.44 seconds, i.e., an increase of 119%, despite 
the existence of efficient indices in spatial attributes. Therefore, 
it can be concluded that spatial data redundancy from GRSSB 
caused greater performance losses in SOLAP query processing 
than the losses caused by additional joins in GHSSB.

5.2. Results for query type 2

Table 3 shows the performance results for query type 2, 
as a function of the various granularity levels. No signifi-
cant difference was identified between the use of GiST and 
R-tree in our experimental work. Nevertheless, our results 
indicated that the GiST approach may be the better choice 
in most cases. For this reason, unlikely Table 2, Table 3 lists 
only the results for configuration C2 and only this configu-
ration is taken into account in the remaining sections of this 
paper. 

ROLL-UP

DRILL-DOWN

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey

AND p_brand1 = ‘MFGR#2239’
AND s_region = ‘EUROPE’
AND c_region = ‘AMERICA’

ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND INTERSECTS (City, QW)
AND INTERSECTS (Nation, QW)
AND INTERSECTS (Region, QW)

}
AND lo_custkey = c_custkey

Figure 6. Adaption of SSB Q3.3 query for query type 4.

1 2

City

Nation

Region

Figure 7. Query Windows 1 and 2 for query type 4.

Table 2. Performance obtained with configurations C1 and C2 (query 
type 1; elapsed time in seconds)

C1 C2

GRSSB GHSSB GRSSB GHSSB

Address 2854.17 2866.51 2831.23 2853.85

City 2773.39 2763.17 2773.10 2758.70

Nation 4047.35 2766.14 3449.76 2765.61

Region 6220.68 2787.83 6200.44 2790.29
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For the containment spatial predicate, the performance 
results were very similar in both GRSSB and GHSSB schemas 
for the Address and City granularity levels. At these levels, 
spatial data redundancy does not impair the performance 
of SOLAP queries. In fact, the Address level has spatial data 
that are points, which are less costly for calculating spatial 
relationships. Moreover, addresses are not repeated in the 
dimension table. Cities are polygons and have a lower degree 
of spatial data redundancy than the Region and Nation gran-
ularity levels in GRSSB schema.

On the other hand, for the granularities levels of Nation 
and Region, which have a high degree of spatial data redun-
dancy in GRSSB schema, the impact of spatial data redundancy 
was very high. At the granularity level of Nation, the query 
processing on the GHSSB schema took 1687.82 seconds, while 
on the GRSSB schema it took 4026.63 seconds, an increase of 
138.56%. At the granularity level of Region, there was an even 
greater increase of 815.96% due to spatial data redundancy.

Furthermore, the decrease in elapsed time in the SOLAP 
query processing in GHSSB schema as the granularity level 
increases reflects the smaller number of answers. For instance, 
there are far more addresses inside the query windows on the 
Address level than regions inside the query windows on the 
Region granularity level.

5.3. Results for query type 3

Table 4 lists the performance results for query type 3, as a 
function of the various granularity levels. 

Similarly to the containment spatial predicate, the perform-
ance results for the enclosure spatial predicate were very 
similar in both GRSSB and GHSSB schemas for the Address 
and City granularity levels. The differences in performance, 
albeit minor, occurred on the Nation level, i.e., an increase of 
29.34%. The performance gap drastically increased at Region 
level, 116.03%, mainly because this level has a high degree of 
spatial data redundancy. Furthermore, fewer objects satisfy 
the enclosure spatial predicate at this level.

5.4. Results for query type 4

Query type 4 is a highly costly SOLAP query that has 
two spatial query windows. This indicates the need for addi-
tional join costs. Due to this overhead, this section discusses 
performance results specifically to the City granularity level 
(Table 5). Also, the hardware was upgraded as follows: 
7200 RPM SATA 750 GB  hard disk with 32 MB of cache, and 
8 GB of main memory. For the Region and Nation granularity 
levels, we aborted SOLAP query processing in GRSSB after 
4 days of execution, since this elapsed time is prohibitive.

Even at a level with low degree of spatial data redun-
dancy, such as the City granularity level, the performance 
results clearly indicate that spatial data redundancy drasti-
cally impairs the performance of SOLAP queries. While in 
GHSSB the SOLAP queries took only 130 seconds, in GRSSB 
the SOLAP queries took 172,900.15 seconds (approximately 
48 hours). The increase in the elapsed time was impressive 
(132.900%). 

5.5. Query processing remarks 

Although our tests indicate that SOLAP query processing 
in GHSSB is more efficient than in GRSSB, they also show 
that both schemas involve prohibitive query response times. 
Clearly, the challenge in GDW is to retrieve data related to 
ad hoc query windows and to avoid the high cost of star-joins. 
Thus, mechanisms to provide efficient query processing, 
such as index structures, are essential.

In the next sections, we describe existing indices and offer 
a brief description of a novel index structure for GDW called 
the SB-index 29. We also discuss how spatial data redundancy 
affects indexing.

6. Indices
In the previous section, we identified reasons for using 

an index structure to improve SOLAP query performance 
over GDW. Section 6.1 discusses existing indices for DW and 
GDW, while Section 6.2 describes our SB-index approach. 

6.1. Indices for DW and GDW 

The Projection Index and the Bitmap Index are proven 
valuable choices in conventional DW indexing, since multi-
dimensionality is not an obstacle to them20, 31, 35, 36. 

Consider X as an attribute of a relation R. Then, the 
Projection Index on X is a sequence of values for X extracted 
from R and sorted by the row number. Undoubtedly, repeated 
values exist. The basic Bitmap index associates one bit-vector 
to each distinct value v of the indexed attribute X17. The 
bit-vectors maintain as many bits as the number of records 

Table 3. Performance results for configuration C2 (query type 2; 
elapsed time in seconds).

C2
GRSSB GHSSB

Address 2811.08 3004.44
City 2789.53 2758.30
Nation 4026.63 1687.82
Region 10442.73 1140.09

Table 4. Performance results for configuration C2 (query type 3; 
elapsed time in seconds).

C2
GRSSB GHSSB

Address 2739.64 2779.02
City 2259.66 2239.54
Nation 2893.50 2237.05
Region 6154.28 2848.80

Table 5. Performance results for configuration C2 (query type 4; 
elapsed time in seconds).

C2
GRSSB GHSSB

City 172,900.15 130.34
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found in the data set. If X = v for the k-th record of the data 
set, then the k-th bit of the bit-vector associated with v has 
the value 1. The attribute cardinality, |X|, is the number of 
distinct values of X and determines the number of bit-vec-
tors. A star-join Bitmap index can be created for the attribute 
C of a dimension table to indicate the set of rows in the fact 
table to be joined with a certain value of C.

Figure 8 shows data from a DW star-schema (Figures 8a,c), 
a projection index (Figure 8b) and bit-vectors of two star-
join Bitmap indices for attributes s_address and s_region 
(Figures 8d,e). The attribute s_suppkey is referenced by 
lo_suppkey shown in the fact table. Although s_address is not 
involved in the star join, it is possible to index this attribute 
by a star-join Bitmap index, since there is a 1:1 relationship 
between s_suppkey and s_address. 

Q1  Q2 if, and only if, Q1 can be answered using solely the 
results of Q2, and Q1 ≠ Q2 

11. Therefore, it is possible to index 
s_region because s_region  s_nation  s_city  s_address. 
For instance, executing a bitwise OR with the bit-vectors for 
s_address = ‘B’ and s_address = ‘C’ results in the bit-vector 
for s_region = ‘EUROPE’. Clearly, creating star-join Bitmap 
indices to attribute hierarchies suffices to allow roll-up and 
drill-down operations. 

Figure 8e also indicates that rather than storing the value 
‘EUROPE’ twice, the Bitmap Index associates this value to a 
bit-vector and uses 4 bits to indicate the four tuples where 
s_region = ‘EUROPE’. This simple example shows how 
Bitmap deals with data redundancy. Furthermore, if a query 
asking for s_region = ‘EUROPE’ and lo_custkey = 235 were 
submitted for execution, then a bit-wise AND operation 
would be executed using the corresponding bit-vectors in 
order to answer this query. This property explains why the 
number of dimension tables does not drastically affect the 
Bitmap efficiency.

High cardinality has been considered the Bitmap’s main 
drawback. However, recent studies have demonstrated that, 
even with very high cardinality, the Bitmap index approach 
can provide an acceptable response time and storage utili-
zation36. Three techniques have been proposed to reduce the 
Bitmap index size31: compression, binning and encoding. The 
FastBit is a Free Software that efficiently implements Bitmap 
indices with encoding, binning and compression19, 35. The 
FastBit creates a Projection Index and an index file for each 
attribute. The index file stores an array of distinct values in 
ascending order, whose entries point to bit-vectors.

Albeit suitable for conventional DW, to the best of our 
knowledge, the Bitmap approach has never been applied 
to GDW, nor does it the FastBit have resources to support 
GDW indexing. In fact, only one GDW index has so far 
been found in the database literature, namely the aR-Tree21. 
The aR-tree index uses the R-tree’s partitioning method 
to create implicit ad hoc hierarchies for spatial objects. 
Nevertheless, this is not the case of some GDW applications, 
which use mainly predefined attribute hierarchies such as 
region  nation  city  address. Thus, there is a need for 
an efficient index for GDW to support predefined spatial 
attribute hierarchies and to deal with multidimensionality.

6.2. The SB-index 

The purpose of the Spatial Bitmap Index (SB-index) is to 
introduce the Bitmap index in GDW in order to reuse this 
method’s legacy for DW and inherit all of its advantages. 
The SB-index computes the spatial predicate and transforms 
it into a conventional one, which can be computed together 
with other conventional predicates. This strategy provides the 
whole query answer using a star-join Bitmap index. Thus, the 
GDW star-join operation is avoided and predefined spatial 
attributes hierarchies can be indexed. The SB-index therefore 
provides a means for processing SOLAP operations.

Figure 8. Fragment of data, Projection and Bitmap indices. a) Dimension Table: Supplier; b) Projection Index; c) Fact Table: Lineorder; d) Star-
join Bitmap: s_address; and e) Star-join Bitmap: s_region.
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We have designed the SB-index as an adapted projection 
index. Each entry maintains a key value and a minimum 
bounding rectangle (MBR). The key value references the 
spatial dimension table’s primary key and also identifies 
the spatial object represented by the corresponding MBR. 
A DW often has surrogate keys, so an integer value is an 
appropriate choice for primary keys. A MBR is implemented 
as two pairs of coordinates. As a result, the size of the 
SB-index entry (denoted as s) is given by the expression 
s  =  sizeof(int) + 4 × sizeof(double).

The SB-index is an array stored on disk. L is the maximum 
number of SB-index objects that can be stored on one disk 
page. Suppose that the size s of an entry is equal to 36 bytes 
(one integer of 4 bytes and four double precision numbers of 
8 bytes each) and that a disk page has 4 KB. Thus, we have 
L = (4096 DIV 36) = 113 entries. To avoid fragmented entries 
on different pages, some unused bytes (U) may separate 
them. In this example, U = 4096 – (113 × 36) = 28 bytes.

The SB-index query processing illustrated in Figure 9 has 
been divided into two tasks. The first one performs a sequen-
tial scan on the SB-index and adds candidates (possible 
answers) to a collection. The second task consists of checking 
which candidates are seen as answers and producing a 
conventional predicate.

During the scan on the SB-index file, one disk page must 
be read per step, and its contents copied to a buffer in primary 
memory. After filling the buffer, a sequential scan on each 
entry is needed to test the MBR against the spatial predicate. 
If this test evaluates to true, the corresponding key value 
must be collected. After scanning the whole file, a collection 
of candidates is found (i.e., key values whose spatial objects 
may be answers to the query spatial predicate). Currently, the 
SB-index supports intersection, containment and enclosure 
range queries, as well as point and exact queries.

The second task involves checking which candidates can 
really be considered answers. This is the refinement task 

and requires an access to the spatial dimension table using 
each candidate key value in order to fetch the original spatial 
object. Clearly, indicating candidates reduces the number of 
objects that must be queried, and is a good practice to decrease 
query response time. Then, the previously identified objects 
are tested against the spatial predicate using proper spatial 
database functions. If this test evaluates to true, the corre-
sponding key value must be used to compose a conventional 
predicate. Here the SB-index transforms the spatial predicate 
into a conventional one. Finally, the resulting conventional 
predicate is given to the FastBit software, which can combine 
it with other conventional predicates and solve the entire 
query.

7. Performance Results and Evaluation 
Applied to Indices 

This section discusses the performance results derived 
from the following additional test configuration:

•	 C3:	SB-index	to	avoid	a	star-join.

This configuration was applied to the same data and 
queries used for configurations C1 and C2, in order to 
compare both C1 and C2 to C3. The experimental setup is the 
same as that outlined in Section 4. 

Our index structure was implemented with C++ and 
compiled with gcc 4.1. Disk page size was set to 4 KB. Bitmap 
indices were built with WAH compression35 and without 
encoding or binning methods. 

To investigate the index building costs, we gathered the 
number of disk accesses, the elapsed time (seconds) and the 
space required to store the index. To analyze query processing, 
we collected the elapsed time (seconds) and the number of 
disk accesses. In the experiments, we submitted 5 complete 
roll-up operations to schemas GRSSB and GHSSB and took 
the average of the measurements for each granularity level.
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7.1. Results for query type 1

Tables 6 and 7 show the results obtained by applying the 
building operations of the SB-index to GRSSB and GHSSB, 
respectively. 

Due to spatial data redundancy, all indices in GRSSB have 
100,000 entries, and hence, are the same size and require the 
same number of disk accesses to be built. In addition, the 
MBR of one spatial object is obtained several times since 
this object may be found in different tuples, causing an over-
head. The star-join Bitmap index occupies 2.3 GB and takes 
11,237.70 seconds to be built. Each SB-index requires 3.5 MB, 
i.e., only a minor addition to storage requirement (0.14% for 
each granularity level). 

Without spatial data redundancy in GHSSB, each spatial 
object is stored once in each spatial table. Therefore, disk 
accesses, elapsed time and disk utilization when building 
the SB-index assume lower values than those mentioned 
for GRSSB. The star-join Bitmap index occupied 3.4 GB and 
building it took 12,437.70 seconds. The SB-index adds at most 
0.10% to storage requirements, specifically at the Address 
level. The increase in storage requirements for the SB-index 
is insignificant at the other three levels.

Tables 8 and 9 show the SB-index query processing results 
for GRSSB and GHSSB, respectively. The time reduction 
columns in these tables compare how much faster C3 is than 
the best results of C1 and C2 (Table 2). The SB-index can check 
if a point (address) lies within a query window without refine-

Table 6. Measurements on building the SB-index for GRSSB.
Elapsed Time (s) Disk Accesses SB-index size

Address 48 886 3.5 MB
City 1,856 886 3.5 MB
Nation 11,566 886 3.5 MB
Region 19,453 886 3.5 MB

Table 7. Measurements on building the SB-index for GHSSB.
Elapsed Time (s) Disk Accesses SB-index size

Address 18 886 3.5 MB
City 4 4 16 KB
Nation 4 2 8 KB
Region 2 2 8 KB

Table 8. Measurements on query processing with the SB-index for GRSSB (query type 1)
SB-index  

Elapsed Time (s)
FastBit-index 

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time 

Reduction
Disk  

Accesses
Address 0.09 132.32 132.41 95.32% 886
City 32.80 238.94 271.74 90.20% 886
Nation 661.41 516.71 1178.12 65.84% 886
Region 3223.19 1398.80 4621.99 25.45% 886

Table 9. Measurements on query processing with the SB-index for GHSSB (query type 1)
SB-index  

Elapsed Time (s)
FastBit-index 

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time 

Reduction
Disk  

Accesses
Address 0.09 131.82 131.91 95.38% 886
City 0.07 149.93 150.00 94.56% 4
Nation 0.05 201.65 201.70 92.70% 2
Region 0.05 268.32 268.37 90.38% 2

ment. However, to check if a polygon (city, nation or region) 
intersects the query window, a refinement task is needed. 
Thus, the Address level has a greater performance gain.

Query processing using the SB-index in GRSSB performed 
886 disk accesses independently of the chosen attribute. This 
fixed number of disk accesses is due to the fact that we used 
sequential scan and all indices have the same number of 
entries for every granularity level (i.e., all indices have the 
same size). 

Redundancy negatively affected the SB-index, since the 
same MBR may be evaluated several times during both 
the SB-index sequential scan and the refinement task. On 
the other hand, adding only 0.14% to storage requirements 
causes a query response time reduction of 25 to 95%, justi-
fying the adoption of the SB-index in GRSSB.

In GHSSB, time reduction was always more than 90%, 
even better than in GRSSB. This difference is due to the fact 
that indices had become smaller, because spatial data redun-
dancy was avoided. In addition, each MBR is evaluated only 
once, in contrast to GRSSB. Again, the tiny SB-index requires 
little storage space and contributes to reduce query response 
time drastically.

In GRSSB, the overhead of the SB-index was much smaller 
than that of the FastBit index for Address and City granu-
larities. The SB-index took only 0.07% of the elapsed time for 
Address granularity and 12.07% for the City granularity level. 
However, as spatial data redundancy increases, the overhead 
of the SB-index exceeds the overhead of the FastBit index. In 
Nation granularity, the SB-index took 56.14% of the elapsed 
time, while in Region granularity the overhead increased and 
the SB-index took 69.74% of the elapsed time. The increase in 
the overhead of the SB-index reduces the performance gain 
(i.e., time reduction column) in SOLAP query performance to 
25.45% at the higher granularity level, but is still a substantial 
improvement.

On the other hand, in GHSSB, the overhead of the 
SB-index was always much smaller than that of the FastBit 
index. The SB-index took only 0.02 to 0.07% of the elapsed 
time. The result is a major time reduction at all granularity 
levels (higher than 90%).
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7.2. Results for query type 2

The index building costs (i.e., the elapsed time, number 
of disk accesses and space required to store the index) were 
the same as those described for query type 1 (Tables 6 and 7). 
Therefore, similar considerations applied to the intersection 
spatial predicate are also applied to the containment spatial 
predicate.

Tables 10 and 11 illustrate the SB-index query processing 
results for GRSSB and GHSSB, respectively. The time reduc-
tion columns in these tables compare how much faster 
configuration C3 (i.e., which uses the SB-index) is than 
configuration C2 (star-join with spatial index in Table 3).

The containment spatial predicate is more restricted for 
polygons than the intersection spatial predicate. Therefore, 
fewer objects are produced in the set of answers of a SOLAP 
query. The expected performance gain of the SB-index, there-
fore, tends to be higher than the intersection spatial predicate, 
since fewer objects need to be analyzed in the refinement 
phase. As observed by4, 1, the exact geometry test in the refine-
ment phase is the most costly part of the spatial processing, 
since it requires fetching and transferring large objects from 
disk to the main memory.

In fact, the performance gain of the SB-index was very 
high for GRSSB, from 78.39 to 94.77%. Unlike the intersec-
tion spatial predicate, for the containment spatial predicate 
the redundancy did not drastically impair the performance 
gain of the SB-index in GRSSB, although the same MBR may 
be evaluated several times during the SB-index sequential 
scan. The SB-index produced even better results for GHSSB, 
showing a performance gain among 90.44 to 96.07%, similar 
to the results reported for the intersection spatial predicate.

In GRSSB, the overhead of the SB-index was much smaller 
than that of the FastBit index for Address and City granulari-
ties. The SB-index took only 0.05% of the elapsed time for the 
Address granularity level and 7.42% for the City granularity 
level. However, as spatial data redundancy increases, the 
overhead of the SB-index becomes quite similar or exceeds 
the overhead of the FastBit index. In Nation granularity, the 
SB-index took 49.99% of the elapsed time, while in Region 

granularity the overhead increased and the SB-index took 
68.66% of the elapsed time. The increase in the overhead of 
the SB-index reduces the performance gain (i.e., time reduc-
tion column) in SOLAP query performance. However, this 
reduction is very small, from 94.77 to 85.61%, and remains a 
huge improvement.

On the other hand, in GHSSB, the overhead of the 
SB-index was always much smaller than that of the FastBit 
index. The SB-index took only 0.09 to 0.99% of the elapsed 
time, resulting in a considerable time reduction for all granu-
larity levels (more than 90%).

7.3. Results for query type 3

The index building costs (i.e., the elapsed time, number 
of disk accesses and space required to store the index) were 
the same as those described for query type 1 (Tables 6 and 7). 
Therefore, similar considerations applied to the intersection 
spatial predicate are also applied to the enclosure spatial 
predicate.

Tables 12 and 13 indicate, respectively, the SB-index query 
processing results for GRSSB and GHSSB. The time reduction 
columns in these tables compare how much faster configura-
tion C3 (i.e., which uses the SB-index) is than configuration 
C2 (star-join with spatial index in Table 4).

The performance gain of the SB-index for GRSSB ranged 
from very high (97.09%) to significant (almost 40%). Spatial 
data redundancy impairs the performance gain of the 
SB-index in GRSSB, particularly because of the huge cost of 
the refinement phase for complex geometries at the Nation 
and Region granularity levels. On the other hand, in GHSSB, 
time reduction always exceeded 90%, which is much better 
than in GRSSB for the Nation and Region granularity levels. 
This fact demonstrates the importance of eliminating redun-
dancy in a GDW.

In GRSSB, the overhead of the SB-index was much smaller 
than that of the FastBit index for Address and City granu-
larities. The SB-index took only 1.27% of the elapsed time for 
the Address granularity level and 6.81% for the City granu-

Table 10. Measurements on query processing with the SB-index for GRSSB (query type 2).
SB-index  

Elapsed Time (s)
FastBit-index 

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time 

Reduction
Disk  

Accesses

Address 0.08 146.96 147.04 94.77% 886
City 12.18 151.96 164.14 94.12% 886
Nation 435.09 435.20 870.29 78.39% 886 
Region 1032.06 471.05 1503.11 85.61% 886

Table 11. Measurements on query processing with the SB-index for GHSSB (query type 2).
SB-index  

Elapsed Time (s)
FastBit-index 

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time 

Reduction
Disk  

Accesses

Address 0.11 117.99 118.10 96.07% 886
City 1.41 141.67 143.08 94.81% 4
Nation 0.91 160.50 161.41 90.44% 2
Region 0.62 106.56 107.18 90.60% 2
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larity level. However, as spatial data redundancy increases, 
the overhead of the SB-index surpasses the overhead of 
the FastBit index. In Nation granularity, the SB-index took 
67.66% of the elapsed time, while in Region granularity the 
overhead increased slightly and the SB-index took 69.27% of 
the elapsed time. The increase in the overhead of the SB-index 
reduces the performance gain (i.e., time reduction column) 
in SOLAP query performance, but still is a remarkable gain 
(almost 40%).

On the other hand, in GHSSB, the overhead of the 
SB-index was always much smaller than the overhead of the 
FastBit index. The SB-index took only 0.65 to 1.39% of the 
elapsed time, resulting in a large time reduction for all granu-
larity levels (more than 90%).

7.4. Results for query type 4

This section focuses on the query processing according to 
the City granularity level. Tables 14 and 15 illustrate, respec-
tively, the SB-index query processing results for GRSSB and 
GHSSB. The time reduction columns in these tables compare 
how much faster configuration C3 (i.e., which uses the 
SB-index) is than configuration C2 (i.e., star-join with spatial 
index in Table 5).

The performance gain of the SB-index was very high for 
GRSSB (99.82%) and GHSSB (76.69%). Therefore, the use of 
indices showed extremely effective and greatly improved 
SOLAP query performance. Spatial data redundancy drasti-
cally impairs the performance of configuration C2, leading 
to a prohibitive query performance in GRSSB and an even 
greater elapsed time in GHSSB (Table 5). 

On the other hand, configuration C3 produced an accept-
able query performance. Query processing on the GRSSB 
schema took only few minutes, while on the GHSSB schema it 
took few seconds. Furthermore, the overhead of the SB-index 
was much smaller than of the FastBit in both GRSSB and 
GHSSB.

8. Additional Test: Scalability of Data 
Volume

In this section, we investigate the impact of the increase in 
data volume on the performance of SOLAP query processing. 
We submitted queries of type 1 to GHSSB and used different 
scale factors to build the GDW. The chosen scale factors 
were 2, 6 and 10, representing increasing data volumes. Data 
generation for scale factor 10 produced 60 million tuples in 
the fact table, while for the other scale factors the number of 
tuples in the fact table was proportional to the scale factor 10 
(i.e., 1/5 for scale factor 2 and 3/5 for scale factor 6).

Tables 16 to 19 describe the performance results for the 
Address, City, Nation and Region granularity levels, respec-
tively. The time reduction rows in these tables compare how 
much faster configuration C3 (i.e., which uses the SB-index) 
is than configuration C2 (i.e., star-join with spatial index). 
The increase in data volume did not impair the performance 
gain of configuration C3. In fact, the performance gain was 
very high and exceeded 89% at all the granularity levels.

Table 12. Measurements on query processing with the SB-index for GRSSB (query type 3).
SB-index  

Elapsed Time (s)
FastBit-index 

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time 

Reduction
Disk  

Accesses

Address 1.01 78.61 79.62 97.09% 886
City 8.64 118.08 126.72 94.39% 886
Nation 545.00 260.55 805.55 72.16% 886
Region 2620.61 1162.30 3782.91 38.53% 886

Table 15. Measurements on query processing with the SB-index for 
GHSSB (query type 4).

SB-index  
Elapsed  
Time (s)

FastBit-index 
Elapsed  
Time (s)

Index Total
Elapsed  
Time (s)

Time 
Reduction

City 0.60 29.78 30.38 76.69%

Table 13. Measurements on query processing with the SB-index for GHSSB (query type 3).
SB-index  

Elapsed Time (s)
FastBit-index 

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time 

Reduction
Disk  

Accesses

Address 1.11 78.65 79.76 97.13% 886
City 1.13 112.88 114.01 94.91% 4
Nation 1.51 124.31 125.82 94.38% 2
Region 1.74 265.90 267.64 90.61% 2

Table 14. Measurements on query processing with the SB-index for 
GRSSB (query type 4).

SB-index  
Elapsed 
Time (s)

FastBit-index 
Elapsed 
Time (s)

Index Total
Elapsed 
Time (s)

Time 
Reduction

City 15.40 296.97 312.37 99.82%
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9. Redundancy-Based Enhancement 
As discussed in Section 7.1, the reason for carrying out the 

simple and efficient SB-index modification described in this 
section is to be able to deal quickly with spatial data redun-
dancy. An overhead is caused while querying GRSSB because 
repeated MBR are evaluated and repeated spatial objects are 
checked in the refinement phase. On the other hand, single 
MBR values should eliminate this overhead, as is the case of 
the GHSSB. 

Therefore, in this paper we propose a second level for the 
SB-index, which consists of assigning a list for each distinct 
MBR. Each list is stored on disk and has all key values asso-
ciated with the assigned distinct MBR. In SOLAP query 
processing, each distinct MBR must be tested against the 
spatial predicate. If this comparison evaluates to true, one 
key value from the corresponding list immediately guides 

Table 16. Measurements on query processing (query type 1) for GHSSB 
using different data volumes at the Address granularity level.

SSB  
Scale Factor 

2 (s)

SSB  
Scale Factor 

6 (s)

SSB  
Scale Factor 

10 (s)

Configuration C2 594.31 1803.62 2853.85
Configuration C3 1.17 1.24 131.91
Time Reduction 99.80% 99.93% 95.38%

Table 19. Measurements on query processing (query type 1) for GHSSB 
using different data volumes at the Region granularity level.

SSB  
Scale Factor 

2 (s)

SSB  
Scale Factor 

6 (s)

SSB  
Scale Factor 

10 (s)

Configuration C2 552.94 1703.31 2790.29
Configuration C3 56.74 164.87 268.37
Time Reduction 89.74% 90.33% 90.38%

Table 17. Measurements on query processing (query type 1) for GHSSB 
using different data volumes at the City granularity level.

SSB  
Scale Factor 

2 (s)

SSB  
Scale Factor 

6 (s)

SSB  
Scale Factor 

10 (s)

Configuration C2 562.08 1686.61 2758.70
Configuration C3 45.27 104.48 150.00
Time Reduction 91.95% 93.81% 94.56%

Table 18. Measurements on query processing (query type 1) for GHSSB 
using different data volumes at the Nation granularity level.

SSB  
Scale Factor 

2 (s)

SSB  
Scale Factor 

6 (s)

SSB  
Scale Factor 

10 (s)

Configuration C2 545.59 1694.00 2765.61
Configuration C3 48.26 103.89 201.70
Time Reduction 91.15% 93.87% 92.70%

the refinement. If the current spatial object is an answer, then 
all key values from the list are instantly added to the conven-
tional predicate. Finally, the conventional predicate is passed 
on to the FastBit, which solves the entire query.

For query type 1, as shown in Tables 6 and 20, the 
proposed modification of the SB-index drastically decreased 
the number of disk accesses from 886 to 100 when building 
the SB-index in GRSSB. The elapsed time to build the SB-index 
increased slightly at the City granularity level, because of the 
additional overhead to manipulate the lists of keys applied 
to a granularity level with low spatial data redundancy. On 
the other hand, for the Nation and Region granularity levels, 
which have much more spatial data redundancy, the elapsed 
time to build the SB-index decreased. The Address granu-
larity level was not tested because it is not redundant.

Furthermore, the proposed modification of the SB-index 
required a very small fraction of the star-join Bitmap index 
volume, from 0.16 to 0.20%. We conclude that the proposed 
modification of the SB-index did not impair the performance 
of the index building operation even for low spatial data 
redundancy.

In fact, the performance gain resulting from the proposed 
modification of the SB-index was more effective in the SOLAP 
query processing. Compared with star-join costs (Tables 2 
and 21), the performance gain was very high in GRSSB, varying 
from 80.41 to 91.74%. Compared with the SB-index without 
the proposed modification (Tables 8 and 21), the performance 
gain was also high in GRSSB, ranging from 15.69 to 73.71%.

Finally, Figures 10 and 11, respectively, indicate how the 
SB-index performed in GRSSB and GHSSB, by comparing it 
to the best results of C1 and C2 (i.e., configurations described 
in Section 5). The axes indicate the time reduction provided 
by the SB-index. In Figure 10, except for the Address granu-
larity level, the results indicate enhancement of the SB-index’s 
second level. 

Instead of eliminating the redundancy in GDW schemas, 
we propose a means of reducing its effects. This strategy 
enhances the SB-index portability, since it allows the SB-index 
to be used in distinct GDW schemas.

Table 20. Measurements on the enhancement of the SB-index applied 
to GRSSB: index building.

Elapsed Time (s) Disk Accesses SB-index size

City 2,005 100 4.81 MB
Nation 11,428 100 3.93 MB
Region 19,446 100 3.86 MB

Table 21. Measurements on the enhancement of the SB-index applied 
to GRSSB: query processing.

Elapsed 
Time (s)

Disk 
Accesses

Time 
Reduction
Star-join

Time 
Reduction
SB-index

City 229.11 511 91.74% 15.69%
Nation 507.41 57 85.29% 56.93%
Region 1214.93 36 80.41% 73.71%
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10. Conclusions 
This paper analyzed the effects of the spatial data redun-

dancy in SOLAP query performance over Geographic Data 
Warehouses (GDW). In order to carry out this analysis, we 
compared the query response times of spatial roll-up/drill-
down operations for two distinct GDW schemas. Since 
redundancy is related to attribute hierarchies in dimension 
tables, the first schema, GRSSB, was designed intrinsically 
redundant, while the other, GHSSB, avoids redundancy 
through a hybrid schema that store the spatial data in sepa-
rate tables. Our performance tests, using current database 
management systems resources, showed that the GRSSB’s 
spatial data redundancy introduced greater performance 
losses than the GHSSB’s joins costs.

These results motivated us to investigate indexing alterna-
tives aimed at improving query performance in a redundant 
GDW. We investigated SOLAP queries defined over the inter-
section, enclosure and containment spatial predicates and 
applied to roll-up and drill-down operations. Comparisons 
between the SB-index and the star-join aided by efficient spatial 
indices (R-trees and GiST) showed that the SB-index greatly 
improved query processing: in GRSSB, performance gains 
ranged from 25.45 to 99.82%, while in GHSSB they varied from 
90.38 to 97.13%. The results also indicated that the SB-index is 

much more compact than the star-join Bitmap, requiring a very 
small fraction of this index volume: at most 0.20%. 

The lower improvement obtained in GRSSB motivated 
us to propose a specific enhancement of the SB-index to 
deal with spatial data redundancy, by evaluating distinct 
MBR and spatial objects only once instead of multiple times. 
This enhancement resulted in performance gains of 80.41 to 
91.74% in GRSSB when compared to star-join. Clearly, spatial 
data redundancy is correlated with performance losses. Based 
on the performance results gathered in our experiments, we 
state that, if possible, the spatial data redundancy should be 
avoided in the GDW design.

We also addressed the impact of the increase in data 
volume on the performance of SOLAP query processing. 
The increase did not impair the performance of the SB-index, 
which highly improved the elapsed time in query processing 
from 89.74 to 99.93% in GHSSB.

We are currently investigating other strategies to mini-
mize the effects of data redundancy on the SB-index, such 
as adapting the SB-index to use the R*-tree CR to manipulate 
distinct MBR1, 7. In order to complement our investigation 
into the effects of data redundancy, we are planning to 
run new experiments using different SOLAP queries and 
different database management systems. The datasets and 
workload used in our experiments are also being adapted to 
create a new benchmark for GDW. We also plan to develop 
algorithms to support update operations on the SB-index, 
considering domains whose spatial objects need frequent 
modifications on their geometries.

The current proposal of the SB-index query processing 
has two phases: filter and refinement phases. An interme-
diate phase using a more accurate approximation could be 
added in order to improve the performance of the SB-index. 
This approximation should reduce even more the number of 
spatial objects to be analyzed in the refinement phase and 
is less expensive to evaluate than the exact geometry of the 
spatial objects4. We intend to use the Convex Hull and 5C 3 as 
the approximation for the intermediate phase.
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