
ISSN 0104-6500Journal of the Brazilian Computer Society, 2009; 15(1):19-34.

*e-mail: ricardo@dc.ufscar.br

The impact of spatial data redundancy on SOLAP
query performance

Thiago Luís Lopes Siqueira1,2, Cristina Dutra de Aguiar Ciferri3, Valéria Cesário Times4,
Anjolina Grisi de Oliveira4, Ricardo Rodrigues Ciferri1*

1Computer Science Department, Federal University of São Carlos – UFSCar
13565-905, São Carlos, SP, Brazil

2São Paulo Federal Institute of Education, Science and Technology – IFSP Salto Campus
13320-271, Salto, SP, Brazil

3Computer Science Department – ICMC, University of São Paulo – USP
13560-970, São Carlos, SP, Brazil

4Informatics Center, Federal University of Pernambuco – UFPE
50670-901, Recife, PE, Brazil

A previous version of this paper appeared at GEOINFO 2008
(X Brazilian Symposium on Geoinformatics)

Received: March 10, 2009; Accepted: May 12, 2009

Abstract: Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial
analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been
focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance
over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and
conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving
SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the
star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to
99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied
to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance.
The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing.
Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most
0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This
enhancement improved performance from 80 to 91% for redundant GDW schemas.

Keywords: geographic data warehouse, index structure, SOLAP query performance, spatial data redundancy.

1. Introduction
Although Geographic Information Systems (GIS), Data

Warehouse (DW) and On-Line Analytical Processing (OLAP)
have different purposes, all of them converge in one aspect:
decision-making support. Some authors have already
proposed they be integrated in a Geographic Data Warehouse
(GDW) to provide a means for carrying out spatial analyses
combined with agile and flexible multidimensional analytical
queries over huge data volumes6, 14, 26, 27. However, little effort
has been devoted to investigating the following issue: How
does spatial data redundancy affect query response time
and storage requirements in a GDW?

Similarly to a GIS, a GDW-based system manipulates
geographic data with geometric and descriptive attributes,
and also supports spatial analyses and ad hoc query windows.
Like a DW12, a GDW is a subject-oriented, integrated, time-
variant and non-volatile dimensional database, which is
often organized in a star schema with dimension and fact
tables. A dimension table contains descriptive data and

is typically designed in hierarchical structures in order to
support different levels of aggregation. A fact table addresses
numerical, additive and continuously valued measuring
data, and maintains dimension keys at their lowest granu-
larity level and one or more numeric measures as well. In
fact, a GDW stores geographic data in one or more dimen-
sions or in at least one measure of the fact table6, 14, 26, 27, 30. An
example of star-schema with spatial attributes is shown in
Figure 1 (Section 4.1).

While OLAP is the technology that provides strategic
multidimensional queries over the DW, spatial OLAP
(SOLAP) provides analytical multidimensional queries based
on spatial predicates that mostly run over GDW2, 6, 12, 25, 27.
Typical types of spatial predicates are intersection, enclo-
sure and containment7. The spatial query window is often an
ad hoc area, not predefined in the spatial dimension tables.

Attribute hierarchies in dimension tables lead to an
intrinsically redundant schema, which provides a means of

Journal of the Brazilian Computer Society20 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

executing roll-up and drill-down operations. These OLAP
operations perform data aggregation and disaggregation,
according to higher and lower granularity levels, respectively.
Kimball and Ross12 stated that a redundant DW schema is
preferable to a non-redundant one, since the former does not
introduce new join costs and the attributes assume conven-
tional data types that require only a few bytes. On the other
hand, in GDW it may not be feasible to estimate the storage
requirements for a spatial object represented by a set of
geometric data30. Also, evaluating a spatial predicate is much
more expensive than executing a conventional one7.

Hence, choosing between a redundant and a non-redun-
dant GDW schema may not lead to the same option as for
conventional DW. This indicates the need for an experimental
evaluation approach to aid GDW designers in making this
choice. In this paper, we investigate spatial data redundancy
effects in SOLAP query performance over GDW.

The contributions of this paper are as follows:
•	 we	analyze	if	a	redundant	schema	aids	SOLAP	query	

processing in a GDW, as it does for OLAP and DW;

•	 we	 address	 the	 indexing	 issue	 with	 the	 purpose	 of	
improving SOLAP query processing on a redundant
GDW;

•	 we	 investigate	 the	 performance	 of	 SOLAP	 queries	
that have one spatial query window. These queries are
defined over different spatial predicates (i.e., intersec-
tion, enclosure and containment) and are applied to
roll-up and drill-down operations;

•	 we	 analyze	 the	 performance	 of	 SOLAP	 queries	 that	
have two spatial query windows. These queries are
defined over the intersection spatial predicate and are
applied to roll-up and drill-down operations; and

•	 We	 investigate	 the	 impact	 of	 the	 increase	 in	 data	
volume with respect to redundant and non-redundant
GDW schemas.

This paper is organized as follows. Section 2 discusses
related work, Section 3 defines SOLAP queries, Section
4 describes the experimental setup, and Section 5 shows
performance results for redundant and non-redundant
GDW schemas, using database systems resources. Section 6
describes indices for DW and GDW, including our SB-index
structure proposal. Section 7 details the experiments
involving the SB-index for redundant and non-redundant
GDW schemas, Section 8 investigates the impact of the
increase in data volume on the performance of SOLAP query
processing, and Section 9 proposes an enhancement of the
SB-index that deals efficiently with spatial data redundancy.
Section 10 concludes the paper.

2. Related Work
Stefanovic et al.30 were the first to propose a GDW frame-

work that addresses spatial dimensions and spatial measures.
The authors proposed that in a spatial-to-spatial dimension
table, all the levels of an attribute hierarchy should maintain
geometric features representing spatial objects. However,

by focusing solely on the selective materialization of spatial
measures, the authors do not discuss the effects of such
redundant schema.

Fidalgo et al.6 foresaw that spatial data redundancy might
deteriorate SOLAP query performance over GDW. To over-
come this issue, they proposed a framework for designing
geographic dimensional schemas that strictly avoid spatial
data redundancy. The authors also validated their proposal
by adapting a DW schema for a GDW. However, they did
not determine whether the non-redundant schema performs
SOLAP queries better than redundant ones.

Sampaio et al.26 proposed a logical multidimensional
model to support spatial data on GDW and investigated
query optimization techniques to enhance the performance
of SOLAP queries. Nevertheless, they did not address the
issue of spatial data redundancy, but simply reused the afore-
mentioned spatial-to-spatial dimension tables introduced by
Stefanovic et al.30.

As far as we know, none of the related work outlined in this
section has experimentally investigated the effects of spatial
data redundancy in GDW, nor examined if this issue really
affects the performance of SOLAP queries. Furthermore, to
the best of our knowledge, there is no other related work that
focus on this issue. This experimental evaluation is therefore
the main objective of our work.

A preliminary version of this work was presented in28.
In this paper, we extend our experimental evaluation by
examining the performance of SOLAP queries defined over
the spatial predicates of intersection, enclosure, and contain-
ment. In particular, we additionally issue queries with two
windows for the intersection predicate. We also investigate
the impact of increasing data volume on redundant and non-
redundant GDW schemas.

3. SOLAP Queries

The term SOLAP refers to environments that focus on GIS
and OLAP functionalities. It therefore denotes the integration
of geographic and multidimensional analytical processing.
The main objective is to provide an open, extensible envi-
ronment with functionalities for manipulation, queries and
analysis not only of conventional data but also of geographic
data25, 27. These data are stored together in GDW.

Our GDW data model is based on two sets of tables,
dimension tables and fact tables, in which each column is asso-
ciated to a given data type. We assume that there are two finite
sets of data types: i) basic types (TB), such as integer, real and
string; and ii) geographic types (TG), whose elements are point,
line, polygon, set of points, set of lines and set of polygons. Some
formal definitions for our GDW are given as follows.

Definition 1 (Dimension Table). A dimension table is an
n-ary relation defined over K × S1×... × Sr × A1 ×... × Am × G1
×... × Gp, so that:

(i) n = 1 + r + m + p;

(ii) K is a set of attributes representing the dimension
table’s primary key;

21The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

(iii) each Si, 1 ≤ i ≤ r is a set of foreign keys for other dimen-
sion tables;

(iv) each column Aj (called an attribute name or simply
attribute), 1 ≤ j ≤ m, is a set of attribute values of type
TB; and

(v) each column Gk (named geometry), 1 ≤ k ≤ p, is a set
of geometric attribute values (or simply geometric
values) of type TG.

Definition 2 (Fact Table). A fact table is an n-ary relation
over K × A1×...× Am × M1 ×...Mr × MG1 ×... × MGq, so that:

(i) K is a set of attributes representing the table’s primary
key, composed of S1 × S2 ×... × Sp, where each
Si (1 ≤ i ≤ p) is a foreign key for a dimension table;

(ii) n = p + m + r + q;

(iii) each attribute Aj (1 ≤ j ≤ m), is a set of attribute values
of type TB;

(iv) each column Mk, (1 ≤ k ≤ r) is a set of measures of type
TB; and

(v) each column MGl (1 ≤ l ≤ q) is a set of measures of type
TG.

Rigaux et al.24 classify the operators on spatial data into
seven groups according to the operator interface, i.e., the
number of arguments and type of return. These groups
are: (i) unary with a Boolean result; (ii) unary with a scalar
result; (iii) unary with a spatial result; (iv) n-ary spatial result;
(v) binary with a scalar result; (vi) binary with a Boolean
result; and (vii) binary spatial result. For each of these groups,
examples of operators are: (i) if the object is convex; (ii) area,
perimeter, length; (iii) buffer zone, centroid; (iv) clipping of
geographic objects; (v) union, intersection and difference;
(vi) intersects, contains (or enclosure), it is contained (or
containment); and (vii) distance. In this paper, our emphasis
is on the operators described in the examples of group vi.

In OLAP, traditional operations include aggregation
and disaggregation (roll-up and drill-down), selection and
projection (pivot, slice and dice)9, 33, 34. Other examples include
operations for navigation in the structure of the data cube,
such as the operators: all, members, ancestor and children
of the MDX language32. In this paper, the emphasis is on the
aggregation and disaggregation operators. Before formally
defining these operators, we will present our mathematical
definition for a data cube, on which the attribute hierarchies
of roll-up and drill-down operations will be represented.

Definition 3 (Level). A GDW schema is a tuple
GDW = (DT, FT), where DT is a non-empty finite set of dimen-
sion tables and FT is a non-empty finite set of fact tables.
Thus, given a GDW, a level l is an attribute of a dt ∈ DT or of
a ft ∈ FT.

Definition 4 (Dimension Schema). Given a geographic
data warehouse GDW = (DT, FT), a dimension schema DS is
a partially ordered set (X ∪ {All}, ≤), in which:

(i) X is a set of levels or X is a set of attributes or geometric
values in a dt ∈ DT or in a ft ∈ FT;

(ii) ≤ defines the relationship between the elements of X;
and

(iii) All is an additional value, which is the largest element
of the partially ordered set (X ∪ {All}, ≤), i.e., x ≤ All
for all x ∈ X.

Definition 5 (Hierarchy). Given a dimension schema
DS = (X ∪ {All}, ≤), a hierarchy h = (S, ≤) is a chain in DS,
where S ⊆ X ∪ {All}. This means that a hierarchy h is a totally
ordered subset of a DS. If all the elements of S are of type TG,
then we say that h is a geographic hierarchy.

To formally define a data cube, the aggregation process
is executed by a function f that gets a multiset R built from
the columns of a fact table ft ∈ FT, generating a single value.
A projection over ft cannot be used to define the domain of
f, since a projection does not have duplicates. Therefore, we
have used a multiset as the domain of f. In addition to the
columns, the rows of the fact table in which f is applied are
defined from the levels, attribute values or geometric values
of a set of dimensions D. Thus, to define the domain of f, we
must first introduce an operation, called a Fact Projection,
which produces a multiset P. This operation returns a mult-
iset of tuples instead of a relation (i.e., a set of tuples) as a
result.

We then define f as a partial function whose domain is a
fact table ft ∈ FT, and the definition domain is a multiset of
tuples R built from the columns and rows of ft in which f is
applied.

Definition 6 (Fact Projection). Given a fact table ft :
K × A1×...× Am × M1×... Mr × MG1 ×...× MGq, in which K, the
set of attributes representing a primary key, is S1 × S2 ×... × Sp
and n = p + m + r + q, as shown in definition 2. A fact projection
ϕs1,...,sx,a1...ay,m1...mz,mg1...mgw (1 ≤ x ≤ p, 1 ≤ y ≤ m, 1 ≤ z ≤ r, 1 ≤ w ≤ q) maps
the n-tuples ft into a multiset of l-tuples, in which l = x + y + z + w
and l ≤ n.

Definition 7 (Aggregation Function). An aggregation
function fi ∈ Fg, a countable set Fg = {f1, f2,...}, is a partial func-
tion fi : ft → V ∪ ⊥ in which:

(i) ft : K × A1 ×... × Am × M1 ×... × Mr × MG1 ×... × MGq is
a fact table in which fi is applied, and K is S1 × S2 ×...
× Sp;

(ii) V is a set of values of type TB or TG; and

(iii) the definition domain of fi is given as follows:

(1) Consider P = ϕs1,...,sx,a1...ay,m1...mz,mg1...mgw a fact projection
over ft, in which 1 ≤ x ≤ p, 1 ≤ y ≤ m, 1 ≤ z ≤ r and
1 ≤ w ≤ q;

(2) Consider D as a set of dimensions; then

(3) R is a multiset of l-tuples of P that are derived from
levels, attribute values or geometric values of D.

For the elements of ft in which fi is undefined, they are
mapped to ⊥.

Definition 8 (Data Cube). A data cube (or simply cube) C
is a 3-tuple < D, ft, f > where:

(i) D is a set of dimensions;

(ii) ft is a fact table;

(iii) f: ft → V ∪ ⊥ is an aggregation function that is applied
to define the facts of C; and

Journal of the Brazilian Computer Society22 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

(iv) the dimension of cube C is equal to |D|, i.e., the
cardinality of D. If |D| = n, and we use the notation
Cn to denote the dimension of C. If D has at least a
level of type TG, then we say that C is a geographic
data cube, denoted here by GC, whose dimension is
given by GCn.

Definition 9 (Roll-up Operation). Roll-up is an oper-
ation that produces a geographic cube GC´ from the
4-tuple < GC = < D, ft, f >, D´, h(S, ≤), (x,y)>, where:

(i) D´∈ D;

(ii) h is a geographic hierarchy in D´; and

(ii) x, y ∈ S ∧ x ≤ y, so that x is the current granularity level
x and y is the selected granularity level.

The drill-down operation may be similarly defined
according to the formal definition given above. The only
difference is that for the drill-down operation, the current
granularity level x and the selected granularity level y are
represented by an ordered pair (x,y) | x, y ∈ S ∧ x ≥ y.

Definition 10 (Drill-down/Roll-up SOLAP Query).
Given a geographical data cube GC0

n. A drill-down/rollup
SOLAP Query creates another geographical data cube GCk

from a sequence of operations Qk° Ok, 1 ≤ k ≤ no, where no
(1 ≤ no ≤ n) is the number of the operations Qk° Ok, and each
Qk° Ok is a composition of the operations Qk with Ok as
following described:

(i) Ok is either a drill-down or roll-up operation which
produces a GCk´ from the 4-tuple < GCk-1= < Dk-1, ftk-1,
fl-1 >, Dk-1´, hk-1(Sk-1, ≤), (xk-1,yk-1)>;

(ii) Qk is an operation that creates another geographical
data cube GCk from the 4-tuple < GCk´, yk-1, Wk, Pk >
where;

a. GCk´ is the result of the operation Ok;

b. yk-1 is the selected granularity level given as an input
parameter for the operation Ok;

c. Wk is a query window;

d. Pk is a predicate that is verified with regards to the
elements of Wk and attribute values of the level yk-1.

According to Silva et al.27, there is a set of 21 classes of
SOLAP queries obtained from the Cartesian product between
the OLAP and the above described spatial operations. In this
paper, we focus on four types of Drill-down/Roll-up SOLAP
query, which are described below and based on the formal
definitions given previously.

•	 Type	1:	in	this	case	we	have	determined	that:	(i)	no = 1
(i.e. there is just one operation Q° O); and (ii) P is a spatial
predicate of intersection. In other words, this type of
query consists of a drill-down/roll-up with a query
window that tests the spatial predicate of intersection.
For example, “retrieve the total of sales per year and
per supplier whose supplier city intersects a query
window”.

•	 Type	2:	here	we	have	defined	that:	(i)	no = 1; and (ii) P
is a spatial predicate “it is contained”. That is to say,
this type of query consists of a drill-down/roll-up
with query window that tests the spatial predicate

“it is contained”, or simply “of containment”. For
example, “retrieve the total sales per year and per
supplier whose supplier city is contained in a query
window”.

•	 Type	3:	for	this	case,	we	have	established	that:	(i)	no = 1;
and (ii) P is a spatial predicate “contains”. This means
a drill-down/roll-up with a query window that tests
the spatial predicate “contains”, or simply “of enclo-
sure”. For example, “retrieve the total sales per year
and per supplier whose supplier region contains a
query window”.

•	 Type	4:	we	have	now	concluded	that:	(i)	no = 2; and
(ii) each Pk (1 ≤ k ≤ 2) is a spatial predicate of inter-
section. This implies a drill-down/roll-up with two
query windows that test the spatial predicate of
intersection. For example, “retrieve the total sales per
year and per supplier of an area x to the customers of
an area y”. In this query, the suppliers of area x are
suppliers whose city intersects a query window J1,
while the customers in area y are customers whose
city intersects a query window J2.

These queries were chosen because they are typically
found in GDW environments. Moreover, they follow the
specification of the Star Schema Benchmark (SSB)18, which
is the standard benchmark for the analysis of DW perform-
ance modeled according to the star schema. The SQL
commands related to the four types of queries are described
in Section 4.2.

4. Experimental Setup

This section describes the workbench (Section 4.1) and
the workload (Section 4.2) used in the performance tests.

4.1. Workbench

Experiments were conducted on a computer with a 2.8 GHz
Pentium D processor, 2 GB of main memory, a 7200 RPM
SATA 320 GB hard disk, Linux CentOS 5.2, PostgreSQL 8.2.5
and PostGIS 1.3.3. We chose the PostgreSQL/PostGIS data-
base management system (DBMS) because it is a well-known
and efficient open source DBMS.

We also adapted the SSB18 to support GDW spatial
analysis, since its spatial information is strictly textual and
stored in the dimensions Supplier and Customer. SSB is
derived from TPC-H22. The changes preserved descriptive
data and created a spatial hierarchy based on the previ-
ously defined conventional dimensions. Both the dimension
tables Supplier and Customer have the following hierarchy:
region nation city address. While the domains of the
attributes s_address and c_address are disjointed, Supplier
and Customer share city, nation and region locations as
attributes. A detailed discussion of spatial hierarchies can
be found in15, 16, 23.

The following two GDW schemas were developed to
investigate to what extent SOLAP queries performance is
affected by spatial data redundancy. According to Stefanovic

23The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

et al. 30, Customer and Supplier are spatial-to-spatial dimen-
sions and may maintain geographic data, as shown in
Figure 1. Attributes with the suffix “_geo” store the geometric
data of geographic features, and there is spatial data redun-
dancy. For instance, a map of Brazil is stored in every row
whose supplier is located in Brazil.

However, as stated by Fidalgo et al.6, in a GDW, spatial
data must not be redundant and should be shared when-
ever possible. Thus, Figure 2 illustrates the dimension tables
Customer and Supplier sharing city, nation and region
locations, but not addresses. Note that this schema is not
normalized, as the hierarchy region nation city address
does not represent a snowflake schema12. The characteristic
of this hybrid schema is that it stores the geometries of the
dimension tables in separate geometry tables. For instance,
the table City represents the geometry for both tables
Customer and Supplier. We chose a hybrid schema instead of
a snowflake to reduce join costs.

While the schema of Figure 1 is called GRSSB (Geographic
Redundant SSB), the schema of Figure 2 is called GHSSB
(Geographic Hybrid SSB). Both schemas were created
using SSB’s database with a scale factor of 10. Data genera-
tion produced 60 million tuples in the fact table, 5 distinct
regions, 25 nations per region, 10 cities per nation and a
certain number of addresses per city varying from 349 to 455.
Cities, nations and regions were represented by polygons,
while addresses were expressed by points. All the geometries
were adapted from Tiger/Line 5. GRSSB uses 150 GB, while
GHSSB has 15 GB.

4.2. Workload

Queries of types 1 to 3 (Section 3) were based on query
Q2.3 of the SSB, while query type 4 (Section 3) was based on
query Q3.3 of SSB. We replaced the underlined conventional
predicates with spatial predicates involving ad hoc query
windows (QW) (Figures 3, 4, 5 and 6). These quadratic query
windows have a correlated distribution with spatial data, and
their centroids are random supplier addresses. Their sizes are
proportional to the spatial granularity.

The query windows allow for the aggregation of data
at different spatial granularity levels, i.e., the application of
spatial roll-up and drill-down operations. Figures 3 to 6 show
how complete spatial roll-up and drill-down operations are
performed. Both operations comprise four query windows of
different sizes that share the same centroid.

Regarding query type 1 (i.e., drill-down/roll-up with one
query window that verifies the intersection spatial relation-
ship), the Address level was evaluated with the containment
relationship and its QW covers 0.001% of the extent. City,
Nation and Region levels were evaluated with the intersec-
tion relationship and their QW cover 0.05, 0.1 and 1% of the
extent, respectively. Figure 3 shows the SQL command for
this query type. Table 1 shows the average number of distinct
spatial objects returned per query type in each granularity
level. In GRSSB, these average numbers are higher.

Address, City, Nation and Region levels of query type 2
(i.e., drill-down/roll-up with one query window that verifies
the containment spatial relationship) were evaluated with
the containment relationship and their QW covers 0.01, 0.1,
10 and 25% of the extent, respectively. Compared to query
type 1, we enlarged the length of the QW for query type 2,
aiming at ensuring the recovery of spatial objects for the
containment relationship. Figure 4 shows the SQL command
for this query type.

Supplier

s_suppkey
s_address
s_address_geo
s_city
s_city_geo
s_nation
s_nation_geo
s_region
s_region_geo

...

Date

d_datakey
d_year

...

lineorder

lo_orderkey
lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_commitdate
lo_revenue

...

Customer

c_custkey
c_address
c_address_geo
c_city
c_city_geo
c_nation

c_region
c_region_geo

c_nation_geo

...

p_partkey
p_brand1

...

Part

c_custkey
c_address
c_address_fk
c_city
c_city_fk
c_nation

c_region
c_region_fk

c_nation_fk

...

s_suppkey
s_address
s_address_fk
s_city
s_city_fk
s_nation

s_region
s_region_fk

s_nation_fk

...

p_partkey
p_brand1

...

Part

c_address_pk
c_address_geo

...

c_address

s_address_pk
s_address_geo

...

s_address

d_datekey
d_year

...

Date

city_pk
city_geo

...

City

nation_pk
nation_geo

...

Nation

region_pk
region_geo

...

Region

lineorder

lo_orderkey
lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_commitdate
lo_revenue

...

Customer Supplier

Figure 1. Adapted SSB with spatial data redundancy: GRSSB.

Figure 2. Adapted SSB without spatial data redundancy: GHSSB.

Table 1. Average number of distinct spatial objects returned per
query type.

Query Address City Nation Region

Type 1 22.2 5.6 1.6 1.2
Type 2 190.4 1.4 1.4 0.4
Type 3 1.0 0.8 0.8 1.0
Type 4 - 13.0 - -

Journal of the Brazilian Computer Society24 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

As for query type 3 (i.e., drill-down/roll-up with one
query window that verifies the enclosure spatial relationship),
the Address level was evaluated with the containment rela-
tionship, and City, Nation and Region levels were evaluated
with the enclosure relationship. Their QW covers 0.00001,
0.0005, 0.001 and 0.01% of the extent, respectively. Compared
to query type 1, we reduced the length of the QW for query
type 3 in order to ensure the recovery of spatial objects for the
enclosure relationship. Figure 5 shows the SQL command for
this query type

Finally, query type 4 (drill-down/roll-up with two query
windows that verify the intersection spatial relationship)
possesses the same characteristics as query type 1. However,
this query adds an extra high join cost to process the two
spatial query windows. Figure 6 shows the SQL command for
query type 4 and Figure 7 depicts the two query windows.

Further details about data and query distribution can be
obtained at http://gbd.dc.ufscar.br/papers/jbcs09/figures.
pdf.

5. Performance Results and Evaluation
Applied to the GDW Schemas

In this section, we discuss the performance results of two
test configurations based on the GRSSB and GHSSB schemas.
These configurations reflect current available DBMS resources
for GDW query processing, and are described as follows:

•	 C1:	star-join	computation	aided	by	R-tree	 index10 on
spatial attributes.

•	 C2:	 star-join	 computation	 aided	 by	 GiST	 index8 on
spatial attributes.

Experiments were performed by submitting 5 complete
roll-up operations to GRSSB and GHSSB and by taking the
average of the measurements for each granularity level. The
performance results were gathered based on the elapsed time
in seconds.

Sections 5.1 to 5.4 discuss performance results for query
types 1, 2, 3 and 4, respectively.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 = ‘MFGR#2239’
AND s_region = ‘EUROPE’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND INTERSECTS (City, QW)
AND INTERSECTS (Nation, QW)
AND INTERSECTS (Region, QW)

ROLL-UP

DRILL-DOWN

Figure 3. Adaption of SSB Q2.3 query for query type 1.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 = ‘MFGR#2239’
AND s_region = ‘EUROPE’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND WITHIN (City, QW)
AND WITHIN (Nation, QW)
AND WITHIN (Region, QW)

ROLL-UP

DRILL-DOWN

Figure 4. Adaption of SSB Q2.3 query for query type 2.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 = ‘MFGR#2239’
AND s_region = ‘EUROPE’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND CONTAINS (City, QW)
AND CONTAINS (Nation, QW)
AND CONTAINS (Region, QW)

ROLL-UP

DRILL-DOWN

Figure 5. Adaption of SSB Q2.3 query for query type 3.

25The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

5.1. Results for query type 1

Table 2 shows the results of the performance in processing
query type 1, according to the various levels of granularity.

Fidalgo et al.6 foresaw that although a hybrid GDW
schema introduces new join costs, it should require less
storage space than a redundant one. Our quantitative experi-
ments confirmed this fact and also showed that SOLAP query
processing is negatively affected by spatial data redundancy in
a GDW. According to our results, the attribute granularity does
not affect query processing in GHSSB. For instance, Region-
level queries took 2787.83 seconds in C1, while Address-level
queries took 2866.51 seconds for the same configuration, a very
small increase of 2.82%. Therefore, our experiments showed
that star-join is the most costly process in GHSSB.

On the other hand, as the granularity level increases, the
time required to process a query in GRSSB becomes longer. For
example, in C2, a query on the finest granularity level (Address)
took 2831.23 seconds, while on the highest granularity level
(Region) it took 6200.44 seconds, i.e., an increase of 119%, despite
the existence of efficient indices in spatial attributes. Therefore,
it can be concluded that spatial data redundancy from GRSSB
caused greater performance losses in SOLAP query processing
than the losses caused by additional joins in GHSSB.

5.2. Results for query type 2

Table 3 shows the performance results for query type 2,
as a function of the various granularity levels. No signifi-
cant difference was identified between the use of GiST and
R-tree in our experimental work. Nevertheless, our results
indicated that the GiST approach may be the better choice
in most cases. For this reason, unlikely Table 2, Table 3 lists
only the results for configuration C2 and only this configu-
ration is taken into account in the remaining sections of this
paper.

ROLL-UP

DRILL-DOWN

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey

AND p_brand1 = ‘MFGR#2239’
AND s_region = ‘EUROPE’
AND c_region = ‘AMERICA’

ORDER BY d_year, p_brand1

AND WITHIN (Address, QW)
AND INTERSECTS (City, QW)
AND INTERSECTS (Nation, QW)
AND INTERSECTS (Region, QW)

}
AND lo_custkey = c_custkey

Figure 6. Adaption of SSB Q3.3 query for query type 4.

1 2

City

Nation

Region

Figure 7. Query Windows 1 and 2 for query type 4.

Table 2. Performance obtained with configurations C1 and C2 (query
type 1; elapsed time in seconds)

C1 C2

GRSSB GHSSB GRSSB GHSSB

Address 2854.17 2866.51 2831.23 2853.85

City 2773.39 2763.17 2773.10 2758.70

Nation 4047.35 2766.14 3449.76 2765.61

Region 6220.68 2787.83 6200.44 2790.29

Journal of the Brazilian Computer Society26 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

For the containment spatial predicate, the performance
results were very similar in both GRSSB and GHSSB schemas
for the Address and City granularity levels. At these levels,
spatial data redundancy does not impair the performance
of SOLAP queries. In fact, the Address level has spatial data
that are points, which are less costly for calculating spatial
relationships. Moreover, addresses are not repeated in the
dimension table. Cities are polygons and have a lower degree
of spatial data redundancy than the Region and Nation gran-
ularity levels in GRSSB schema.

On the other hand, for the granularities levels of Nation
and Region, which have a high degree of spatial data redun-
dancy in GRSSB schema, the impact of spatial data redundancy
was very high. At the granularity level of Nation, the query
processing on the GHSSB schema took 1687.82 seconds, while
on the GRSSB schema it took 4026.63 seconds, an increase of
138.56%. At the granularity level of Region, there was an even
greater increase of 815.96% due to spatial data redundancy.

Furthermore, the decrease in elapsed time in the SOLAP
query processing in GHSSB schema as the granularity level
increases reflects the smaller number of answers. For instance,
there are far more addresses inside the query windows on the
Address level than regions inside the query windows on the
Region granularity level.

5.3. Results for query type 3

Table 4 lists the performance results for query type 3, as a
function of the various granularity levels.

Similarly to the containment spatial predicate, the perform-
ance results for the enclosure spatial predicate were very
similar in both GRSSB and GHSSB schemas for the Address
and City granularity levels. The differences in performance,
albeit minor, occurred on the Nation level, i.e., an increase of
29.34%. The performance gap drastically increased at Region
level, 116.03%, mainly because this level has a high degree of
spatial data redundancy. Furthermore, fewer objects satisfy
the enclosure spatial predicate at this level.

5.4. Results for query type 4

Query type 4 is a highly costly SOLAP query that has
two spatial query windows. This indicates the need for addi-
tional join costs. Due to this overhead, this section discusses
performance results specifically to the City granularity level
(Table 5). Also, the hardware was upgraded as follows:
7200 RPM SATA 750 GB hard disk with 32 MB of cache, and
8 GB of main memory. For the Region and Nation granularity
levels, we aborted SOLAP query processing in GRSSB after
4 days of execution, since this elapsed time is prohibitive.

Even at a level with low degree of spatial data redun-
dancy, such as the City granularity level, the performance
results clearly indicate that spatial data redundancy drasti-
cally impairs the performance of SOLAP queries. While in
GHSSB the SOLAP queries took only 130 seconds, in GRSSB
the SOLAP queries took 172,900.15 seconds (approximately
48 hours). The increase in the elapsed time was impressive
(132.900%).

5.5. Query processing remarks

Although our tests indicate that SOLAP query processing
in GHSSB is more efficient than in GRSSB, they also show
that both schemas involve prohibitive query response times.
Clearly, the challenge in GDW is to retrieve data related to
ad hoc query windows and to avoid the high cost of star-joins.
Thus, mechanisms to provide efficient query processing,
such as index structures, are essential.

In the next sections, we describe existing indices and offer
a brief description of a novel index structure for GDW called
the SB-index 29. We also discuss how spatial data redundancy
affects indexing.

6. Indices
In the previous section, we identified reasons for using

an index structure to improve SOLAP query performance
over GDW. Section 6.1 discusses existing indices for DW and
GDW, while Section 6.2 describes our SB-index approach.

6.1. Indices for DW and GDW

The Projection Index and the Bitmap Index are proven
valuable choices in conventional DW indexing, since multi-
dimensionality is not an obstacle to them20, 31, 35, 36.

Consider X as an attribute of a relation R. Then, the
Projection Index on X is a sequence of values for X extracted
from R and sorted by the row number. Undoubtedly, repeated
values exist. The basic Bitmap index associates one bit-vector
to each distinct value v of the indexed attribute X17. The
bit-vectors maintain as many bits as the number of records

Table 3. Performance results for configuration C2 (query type 2;
elapsed time in seconds).

C2
GRSSB GHSSB

Address 2811.08 3004.44
City 2789.53 2758.30
Nation 4026.63 1687.82
Region 10442.73 1140.09

Table 4. Performance results for configuration C2 (query type 3;
elapsed time in seconds).

C2
GRSSB GHSSB

Address 2739.64 2779.02
City 2259.66 2239.54
Nation 2893.50 2237.05
Region 6154.28 2848.80

Table 5. Performance results for configuration C2 (query type 4;
elapsed time in seconds).

C2
GRSSB GHSSB

City 172,900.15 130.34

27The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

found in the data set. If X = v for the k-th record of the data
set, then the k-th bit of the bit-vector associated with v has
the value 1. The attribute cardinality, |X|, is the number of
distinct values of X and determines the number of bit-vec-
tors. A star-join Bitmap index can be created for the attribute
C of a dimension table to indicate the set of rows in the fact
table to be joined with a certain value of C.

Figure 8 shows data from a DW star-schema (Figures 8a,c),
a projection index (Figure 8b) and bit-vectors of two star-
join Bitmap indices for attributes s_address and s_region
(Figures 8d,e). The attribute s_suppkey is referenced by
lo_suppkey shown in the fact table. Although s_address is not
involved in the star join, it is possible to index this attribute
by a star-join Bitmap index, since there is a 1:1 relationship
between s_suppkey and s_address.

Q1 Q2 if, and only if, Q1 can be answered using solely the
results of Q2, and Q1 ≠ Q2

11. Therefore, it is possible to index
s_region because s_region s_nation s_city s_address.
For instance, executing a bitwise OR with the bit-vectors for
s_address = ‘B’ and s_address = ‘C’ results in the bit-vector
for s_region = ‘EUROPE’. Clearly, creating star-join Bitmap
indices to attribute hierarchies suffices to allow roll-up and
drill-down operations.

Figure 8e also indicates that rather than storing the value
‘EUROPE’ twice, the Bitmap Index associates this value to a
bit-vector and uses 4 bits to indicate the four tuples where
s_region = ‘EUROPE’. This simple example shows how
Bitmap deals with data redundancy. Furthermore, if a query
asking for s_region = ‘EUROPE’ and lo_custkey = 235 were
submitted for execution, then a bit-wise AND operation
would be executed using the corresponding bit-vectors in
order to answer this query. This property explains why the
number of dimension tables does not drastically affect the
Bitmap efficiency.

High cardinality has been considered the Bitmap’s main
drawback. However, recent studies have demonstrated that,
even with very high cardinality, the Bitmap index approach
can provide an acceptable response time and storage utili-
zation36. Three techniques have been proposed to reduce the
Bitmap index size31: compression, binning and encoding. The
FastBit is a Free Software that efficiently implements Bitmap
indices with encoding, binning and compression19, 35. The
FastBit creates a Projection Index and an index file for each
attribute. The index file stores an array of distinct values in
ascending order, whose entries point to bit-vectors.

Albeit suitable for conventional DW, to the best of our
knowledge, the Bitmap approach has never been applied
to GDW, nor does it the FastBit have resources to support
GDW indexing. In fact, only one GDW index has so far
been found in the database literature, namely the aR-Tree21.
The aR-tree index uses the R-tree’s partitioning method
to create implicit ad hoc hierarchies for spatial objects.
Nevertheless, this is not the case of some GDW applications,
which use mainly predefined attribute hierarchies such as
region nation city address. Thus, there is a need for
an efficient index for GDW to support predefined spatial
attribute hierarchies and to deal with multidimensionality.

6.2. The SB-index

The purpose of the Spatial Bitmap Index (SB-index) is to
introduce the Bitmap index in GDW in order to reuse this
method’s legacy for DW and inherit all of its advantages.
The SB-index computes the spatial predicate and transforms
it into a conventional one, which can be computed together
with other conventional predicates. This strategy provides the
whole query answer using a star-join Bitmap index. Thus, the
GDW star-join operation is avoided and predefined spatial
attributes hierarchies can be indexed. The SB-index therefore
provides a means for processing SOLAP operations.

Figure 8. Fragment of data, Projection and Bitmap indices. a) Dimension Table: Supplier; b) Projection Index; c) Fact Table: Lineorder; d) Star-
join Bitmap: s_address; and e) Star-join Bitmap: s_region.

Asia
Europe
Europe

Africa
Africa

s_suppkey s_address s_city s_nation s_region
1 A

B
C
D
E

2
3
4
5

Vietnam 2 Vietnam
France 5 France

Romania 2 Romania
Algeria 6 Algeria
Algeria 0 Algeria

s_nation
Vietnam
France

Romania
Algeria
Algeria

Projection Index

512
235

235
512

512
106
235
106

1 20
16
22
19
15
21
20
18

1
2
3
3
3
4
5

lo_suppkey lo_custkey rev

Fact Table: Lineorder

A B C D E
1 0 0 0 0
1 0 0 0 0
0 0 0 01

1
1
1

1
1

0 0 0 0
0 0 0 0
0 0 0 0

00 0 0
0 0 0 0

Stair-join Bitmap: s_address

1 0 0
1 0 0

00 1
1
1
1

1
1

0 0
00
00

0 0
0 0

Asia Europe Africa

Stair-join Bitmap: s_region

Dimension Table: Suppliera b

c d e

Journal of the Brazilian Computer Society28 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

We have designed the SB-index as an adapted projection
index. Each entry maintains a key value and a minimum
bounding rectangle (MBR). The key value references the
spatial dimension table’s primary key and also identifies
the spatial object represented by the corresponding MBR.
A DW often has surrogate keys, so an integer value is an
appropriate choice for primary keys. A MBR is implemented
as two pairs of coordinates. As a result, the size of the
SB-index entry (denoted as s) is given by the expression
s = sizeof(int) + 4 × sizeof(double).

The SB-index is an array stored on disk. L is the maximum
number of SB-index objects that can be stored on one disk
page. Suppose that the size s of an entry is equal to 36 bytes
(one integer of 4 bytes and four double precision numbers of
8 bytes each) and that a disk page has 4 KB. Thus, we have
L = (4096 DIV 36) = 113 entries. To avoid fragmented entries
on different pages, some unused bytes (U) may separate
them. In this example, U = 4096 – (113 × 36) = 28 bytes.

The SB-index query processing illustrated in Figure 9 has
been divided into two tasks. The first one performs a sequen-
tial scan on the SB-index and adds candidates (possible
answers) to a collection. The second task consists of checking
which candidates are seen as answers and producing a
conventional predicate.

During the scan on the SB-index file, one disk page must
be read per step, and its contents copied to a buffer in primary
memory. After filling the buffer, a sequential scan on each
entry is needed to test the MBR against the spatial predicate.
If this test evaluates to true, the corresponding key value
must be collected. After scanning the whole file, a collection
of candidates is found (i.e., key values whose spatial objects
may be answers to the query spatial predicate). Currently, the
SB-index supports intersection, containment and enclosure
range queries, as well as point and exact queries.

The second task involves checking which candidates can
really be considered answers. This is the refinement task

and requires an access to the spatial dimension table using
each candidate key value in order to fetch the original spatial
object. Clearly, indicating candidates reduces the number of
objects that must be queried, and is a good practice to decrease
query response time. Then, the previously identified objects
are tested against the spatial predicate using proper spatial
database functions. If this test evaluates to true, the corre-
sponding key value must be used to compose a conventional
predicate. Here the SB-index transforms the spatial predicate
into a conventional one. Finally, the resulting conventional
predicate is given to the FastBit software, which can combine
it with other conventional predicates and solve the entire
query.

7. Performance Results and Evaluation
Applied to Indices

This section discusses the performance results derived
from the following additional test configuration:

•	 C3:	SB-index	to	avoid	a	star-join.

This configuration was applied to the same data and
queries used for configurations C1 and C2, in order to
compare both C1 and C2 to C3. The experimental setup is the
same as that outlined in Section 4.

Our index structure was implemented with C++ and
compiled with gcc 4.1. Disk page size was set to 4 KB. Bitmap
indices were built with WAH compression35 and without
encoding or binning methods.

To investigate the index building costs, we gathered the
number of disk accesses, the elapsed time (seconds) and the
space required to store the index. To analyze query processing,
we collected the elapsed time (seconds) and the number of
disk accesses. In the experiments, we submitted 5 complete
roll-up operations to schemas GRSSB and GHSSB and took
the average of the measurements for each granularity level.

Template de Figuras - JBCS
* Fontes Palatino (Roman) Tamanho 8.
* "Cenário" - linhas com 0.5 de Stroke.
* Linhas pertencente a "Dados gráficos" com 0.6 de Stroke.
* Preencimento de barras pb devem ter 10% de preto quando houver texto e 50% quando não.
* Dados na tabela ou figura devem estar no mesmo idioma do artigo.
* Legendas devem estar dentro de caixas de texto com 2 mm de distância nas extremidades.
* Texto da figura ou gráfico deve estar em "Sentence case".
* Setas devem ter 0.6 ponto de Stroke.
* Letras que representam figuras ex: ©, devem estar no canto superior direito com 2 mm de
distância das extremidades da figura.
* Retirar eixos sem valores de gráficos.
* Retirar efeito 3D dos gráficos, e deixar somente em gráfico de pizza.
* Padrão de cor Grayscale.
OBS: DELETAR ESTA CAIXA APÓS O TÉRMINO DAS FIGURAS.

1. Read 2. Scan 3. Collection

Secondary
 Memory

Primary
Memory

Primary
Memory

Primary
Memory

4. Refinement 5. Result

Database

Geometry
[0]
[1]
[2]
[3]

[0]
[1]
[2]
[3]

[L-2]
[L-1]

[L-2]
[L-1]

Copy

buffer

Candidates

4,078

1

1
2
3
4

9

256

5

PK

100,000

Spatial
dimension table

Answers
1, 9 "where

PK = 1 or
PK = 9"

Figure 9. SB-index query processing.

29The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

7.1. Results for query type 1

Tables 6 and 7 show the results obtained by applying the
building operations of the SB-index to GRSSB and GHSSB,
respectively.

Due to spatial data redundancy, all indices in GRSSB have
100,000 entries, and hence, are the same size and require the
same number of disk accesses to be built. In addition, the
MBR of one spatial object is obtained several times since
this object may be found in different tuples, causing an over-
head. The star-join Bitmap index occupies 2.3 GB and takes
11,237.70 seconds to be built. Each SB-index requires 3.5 MB,
i.e., only a minor addition to storage requirement (0.14% for
each granularity level).

Without spatial data redundancy in GHSSB, each spatial
object is stored once in each spatial table. Therefore, disk
accesses, elapsed time and disk utilization when building
the SB-index assume lower values than those mentioned
for GRSSB. The star-join Bitmap index occupied 3.4 GB and
building it took 12,437.70 seconds. The SB-index adds at most
0.10% to storage requirements, specifically at the Address
level. The increase in storage requirements for the SB-index
is insignificant at the other three levels.

Tables 8 and 9 show the SB-index query processing results
for GRSSB and GHSSB, respectively. The time reduction
columns in these tables compare how much faster C3 is than
the best results of C1 and C2 (Table 2). The SB-index can check
if a point (address) lies within a query window without refine-

Table 6. Measurements on building the SB-index for GRSSB.
Elapsed Time (s) Disk Accesses SB-index size

Address 48 886 3.5 MB
City 1,856 886 3.5 MB
Nation 11,566 886 3.5 MB
Region 19,453 886 3.5 MB

Table 7. Measurements on building the SB-index for GHSSB.
Elapsed Time (s) Disk Accesses SB-index size

Address 18 886 3.5 MB
City 4 4 16 KB
Nation 4 2 8 KB
Region 2 2 8 KB

Table 8. Measurements on query processing with the SB-index for GRSSB (query type 1)
SB-index

Elapsed Time (s)
FastBit-index

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time

Reduction
Disk

Accesses
Address 0.09 132.32 132.41 95.32% 886
City 32.80 238.94 271.74 90.20% 886
Nation 661.41 516.71 1178.12 65.84% 886
Region 3223.19 1398.80 4621.99 25.45% 886

Table 9. Measurements on query processing with the SB-index for GHSSB (query type 1)
SB-index

Elapsed Time (s)
FastBit-index

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time

Reduction
Disk

Accesses
Address 0.09 131.82 131.91 95.38% 886
City 0.07 149.93 150.00 94.56% 4
Nation 0.05 201.65 201.70 92.70% 2
Region 0.05 268.32 268.37 90.38% 2

ment. However, to check if a polygon (city, nation or region)
intersects the query window, a refinement task is needed.
Thus, the Address level has a greater performance gain.

Query processing using the SB-index in GRSSB performed
886 disk accesses independently of the chosen attribute. This
fixed number of disk accesses is due to the fact that we used
sequential scan and all indices have the same number of
entries for every granularity level (i.e., all indices have the
same size).

Redundancy negatively affected the SB-index, since the
same MBR may be evaluated several times during both
the SB-index sequential scan and the refinement task. On
the other hand, adding only 0.14% to storage requirements
causes a query response time reduction of 25 to 95%, justi-
fying the adoption of the SB-index in GRSSB.

In GHSSB, time reduction was always more than 90%,
even better than in GRSSB. This difference is due to the fact
that indices had become smaller, because spatial data redun-
dancy was avoided. In addition, each MBR is evaluated only
once, in contrast to GRSSB. Again, the tiny SB-index requires
little storage space and contributes to reduce query response
time drastically.

In GRSSB, the overhead of the SB-index was much smaller
than that of the FastBit index for Address and City granu-
larities. The SB-index took only 0.07% of the elapsed time for
Address granularity and 12.07% for the City granularity level.
However, as spatial data redundancy increases, the overhead
of the SB-index exceeds the overhead of the FastBit index. In
Nation granularity, the SB-index took 56.14% of the elapsed
time, while in Region granularity the overhead increased and
the SB-index took 69.74% of the elapsed time. The increase in
the overhead of the SB-index reduces the performance gain
(i.e., time reduction column) in SOLAP query performance to
25.45% at the higher granularity level, but is still a substantial
improvement.

On the other hand, in GHSSB, the overhead of the
SB-index was always much smaller than that of the FastBit
index. The SB-index took only 0.02 to 0.07% of the elapsed
time. The result is a major time reduction at all granularity
levels (higher than 90%).

Journal of the Brazilian Computer Society30 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

7.2. Results for query type 2

The index building costs (i.e., the elapsed time, number
of disk accesses and space required to store the index) were
the same as those described for query type 1 (Tables 6 and 7).
Therefore, similar considerations applied to the intersection
spatial predicate are also applied to the containment spatial
predicate.

Tables 10 and 11 illustrate the SB-index query processing
results for GRSSB and GHSSB, respectively. The time reduc-
tion columns in these tables compare how much faster
configuration C3 (i.e., which uses the SB-index) is than
configuration C2 (star-join with spatial index in Table 3).

The containment spatial predicate is more restricted for
polygons than the intersection spatial predicate. Therefore,
fewer objects are produced in the set of answers of a SOLAP
query. The expected performance gain of the SB-index, there-
fore, tends to be higher than the intersection spatial predicate,
since fewer objects need to be analyzed in the refinement
phase. As observed by4, 1, the exact geometry test in the refine-
ment phase is the most costly part of the spatial processing,
since it requires fetching and transferring large objects from
disk to the main memory.

In fact, the performance gain of the SB-index was very
high for GRSSB, from 78.39 to 94.77%. Unlike the intersec-
tion spatial predicate, for the containment spatial predicate
the redundancy did not drastically impair the performance
gain of the SB-index in GRSSB, although the same MBR may
be evaluated several times during the SB-index sequential
scan. The SB-index produced even better results for GHSSB,
showing a performance gain among 90.44 to 96.07%, similar
to the results reported for the intersection spatial predicate.

In GRSSB, the overhead of the SB-index was much smaller
than that of the FastBit index for Address and City granulari-
ties. The SB-index took only 0.05% of the elapsed time for the
Address granularity level and 7.42% for the City granularity
level. However, as spatial data redundancy increases, the
overhead of the SB-index becomes quite similar or exceeds
the overhead of the FastBit index. In Nation granularity, the
SB-index took 49.99% of the elapsed time, while in Region

granularity the overhead increased and the SB-index took
68.66% of the elapsed time. The increase in the overhead of
the SB-index reduces the performance gain (i.e., time reduc-
tion column) in SOLAP query performance. However, this
reduction is very small, from 94.77 to 85.61%, and remains a
huge improvement.

On the other hand, in GHSSB, the overhead of the
SB-index was always much smaller than that of the FastBit
index. The SB-index took only 0.09 to 0.99% of the elapsed
time, resulting in a considerable time reduction for all granu-
larity levels (more than 90%).

7.3. Results for query type 3

The index building costs (i.e., the elapsed time, number
of disk accesses and space required to store the index) were
the same as those described for query type 1 (Tables 6 and 7).
Therefore, similar considerations applied to the intersection
spatial predicate are also applied to the enclosure spatial
predicate.

Tables 12 and 13 indicate, respectively, the SB-index query
processing results for GRSSB and GHSSB. The time reduction
columns in these tables compare how much faster configura-
tion C3 (i.e., which uses the SB-index) is than configuration
C2 (star-join with spatial index in Table 4).

The performance gain of the SB-index for GRSSB ranged
from very high (97.09%) to significant (almost 40%). Spatial
data redundancy impairs the performance gain of the
SB-index in GRSSB, particularly because of the huge cost of
the refinement phase for complex geometries at the Nation
and Region granularity levels. On the other hand, in GHSSB,
time reduction always exceeded 90%, which is much better
than in GRSSB for the Nation and Region granularity levels.
This fact demonstrates the importance of eliminating redun-
dancy in a GDW.

In GRSSB, the overhead of the SB-index was much smaller
than that of the FastBit index for Address and City granu-
larities. The SB-index took only 1.27% of the elapsed time for
the Address granularity level and 6.81% for the City granu-

Table 10. Measurements on query processing with the SB-index for GRSSB (query type 2).
SB-index

Elapsed Time (s)
FastBit-index

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time

Reduction
Disk

Accesses

Address 0.08 146.96 147.04 94.77% 886
City 12.18 151.96 164.14 94.12% 886
Nation 435.09 435.20 870.29 78.39% 886
Region 1032.06 471.05 1503.11 85.61% 886

Table 11. Measurements on query processing with the SB-index for GHSSB (query type 2).
SB-index

Elapsed Time (s)
FastBit-index

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time

Reduction
Disk

Accesses

Address 0.11 117.99 118.10 96.07% 886
City 1.41 141.67 143.08 94.81% 4
Nation 0.91 160.50 161.41 90.44% 2
Region 0.62 106.56 107.18 90.60% 2

31The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

larity level. However, as spatial data redundancy increases,
the overhead of the SB-index surpasses the overhead of
the FastBit index. In Nation granularity, the SB-index took
67.66% of the elapsed time, while in Region granularity the
overhead increased slightly and the SB-index took 69.27% of
the elapsed time. The increase in the overhead of the SB-index
reduces the performance gain (i.e., time reduction column)
in SOLAP query performance, but still is a remarkable gain
(almost 40%).

On the other hand, in GHSSB, the overhead of the
SB-index was always much smaller than the overhead of the
FastBit index. The SB-index took only 0.65 to 1.39% of the
elapsed time, resulting in a large time reduction for all granu-
larity levels (more than 90%).

7.4. Results for query type 4

This section focuses on the query processing according to
the City granularity level. Tables 14 and 15 illustrate, respec-
tively, the SB-index query processing results for GRSSB and
GHSSB. The time reduction columns in these tables compare
how much faster configuration C3 (i.e., which uses the
SB-index) is than configuration C2 (i.e., star-join with spatial
index in Table 5).

The performance gain of the SB-index was very high for
GRSSB (99.82%) and GHSSB (76.69%). Therefore, the use of
indices showed extremely effective and greatly improved
SOLAP query performance. Spatial data redundancy drasti-
cally impairs the performance of configuration C2, leading
to a prohibitive query performance in GRSSB and an even
greater elapsed time in GHSSB (Table 5).

On the other hand, configuration C3 produced an accept-
able query performance. Query processing on the GRSSB
schema took only few minutes, while on the GHSSB schema it
took few seconds. Furthermore, the overhead of the SB-index
was much smaller than of the FastBit in both GRSSB and
GHSSB.

8. Additional Test: Scalability of Data
Volume

In this section, we investigate the impact of the increase in
data volume on the performance of SOLAP query processing.
We submitted queries of type 1 to GHSSB and used different
scale factors to build the GDW. The chosen scale factors
were 2, 6 and 10, representing increasing data volumes. Data
generation for scale factor 10 produced 60 million tuples in
the fact table, while for the other scale factors the number of
tuples in the fact table was proportional to the scale factor 10
(i.e., 1/5 for scale factor 2 and 3/5 for scale factor 6).

Tables 16 to 19 describe the performance results for the
Address, City, Nation and Region granularity levels, respec-
tively. The time reduction rows in these tables compare how
much faster configuration C3 (i.e., which uses the SB-index)
is than configuration C2 (i.e., star-join with spatial index).
The increase in data volume did not impair the performance
gain of configuration C3. In fact, the performance gain was
very high and exceeded 89% at all the granularity levels.

Table 12. Measurements on query processing with the SB-index for GRSSB (query type 3).
SB-index

Elapsed Time (s)
FastBit-index

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time

Reduction
Disk

Accesses

Address 1.01 78.61 79.62 97.09% 886
City 8.64 118.08 126.72 94.39% 886
Nation 545.00 260.55 805.55 72.16% 886
Region 2620.61 1162.30 3782.91 38.53% 886

Table 15. Measurements on query processing with the SB-index for
GHSSB (query type 4).

SB-index
Elapsed
Time (s)

FastBit-index
Elapsed
Time (s)

Index Total
Elapsed
Time (s)

Time
Reduction

City 0.60 29.78 30.38 76.69%

Table 13. Measurements on query processing with the SB-index for GHSSB (query type 3).
SB-index

Elapsed Time (s)
FastBit-index

Elapsed Time (s)
Index Total

Elapsed Time (s)
Time

Reduction
Disk

Accesses

Address 1.11 78.65 79.76 97.13% 886
City 1.13 112.88 114.01 94.91% 4
Nation 1.51 124.31 125.82 94.38% 2
Region 1.74 265.90 267.64 90.61% 2

Table 14. Measurements on query processing with the SB-index for
GRSSB (query type 4).

SB-index
Elapsed
Time (s)

FastBit-index
Elapsed
Time (s)

Index Total
Elapsed
Time (s)

Time
Reduction

City 15.40 296.97 312.37 99.82%

Journal of the Brazilian Computer Society32 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

9. Redundancy-Based Enhancement
As discussed in Section 7.1, the reason for carrying out the

simple and efficient SB-index modification described in this
section is to be able to deal quickly with spatial data redun-
dancy. An overhead is caused while querying GRSSB because
repeated MBR are evaluated and repeated spatial objects are
checked in the refinement phase. On the other hand, single
MBR values should eliminate this overhead, as is the case of
the GHSSB.

Therefore, in this paper we propose a second level for the
SB-index, which consists of assigning a list for each distinct
MBR. Each list is stored on disk and has all key values asso-
ciated with the assigned distinct MBR. In SOLAP query
processing, each distinct MBR must be tested against the
spatial predicate. If this comparison evaluates to true, one
key value from the corresponding list immediately guides

Table 16. Measurements on query processing (query type 1) for GHSSB
using different data volumes at the Address granularity level.

SSB
Scale Factor

2 (s)

SSB
Scale Factor

6 (s)

SSB
Scale Factor

10 (s)

Configuration C2 594.31 1803.62 2853.85
Configuration C3 1.17 1.24 131.91
Time Reduction 99.80% 99.93% 95.38%

Table 19. Measurements on query processing (query type 1) for GHSSB
using different data volumes at the Region granularity level.

SSB
Scale Factor

2 (s)

SSB
Scale Factor

6 (s)

SSB
Scale Factor

10 (s)

Configuration C2 552.94 1703.31 2790.29
Configuration C3 56.74 164.87 268.37
Time Reduction 89.74% 90.33% 90.38%

Table 17. Measurements on query processing (query type 1) for GHSSB
using different data volumes at the City granularity level.

SSB
Scale Factor

2 (s)

SSB
Scale Factor

6 (s)

SSB
Scale Factor

10 (s)

Configuration C2 562.08 1686.61 2758.70
Configuration C3 45.27 104.48 150.00
Time Reduction 91.95% 93.81% 94.56%

Table 18. Measurements on query processing (query type 1) for GHSSB
using different data volumes at the Nation granularity level.

SSB
Scale Factor

2 (s)

SSB
Scale Factor

6 (s)

SSB
Scale Factor

10 (s)

Configuration C2 545.59 1694.00 2765.61
Configuration C3 48.26 103.89 201.70
Time Reduction 91.15% 93.87% 92.70%

the refinement. If the current spatial object is an answer, then
all key values from the list are instantly added to the conven-
tional predicate. Finally, the conventional predicate is passed
on to the FastBit, which solves the entire query.

For query type 1, as shown in Tables 6 and 20, the
proposed modification of the SB-index drastically decreased
the number of disk accesses from 886 to 100 when building
the SB-index in GRSSB. The elapsed time to build the SB-index
increased slightly at the City granularity level, because of the
additional overhead to manipulate the lists of keys applied
to a granularity level with low spatial data redundancy. On
the other hand, for the Nation and Region granularity levels,
which have much more spatial data redundancy, the elapsed
time to build the SB-index decreased. The Address granu-
larity level was not tested because it is not redundant.

Furthermore, the proposed modification of the SB-index
required a very small fraction of the star-join Bitmap index
volume, from 0.16 to 0.20%. We conclude that the proposed
modification of the SB-index did not impair the performance
of the index building operation even for low spatial data
redundancy.

In fact, the performance gain resulting from the proposed
modification of the SB-index was more effective in the SOLAP
query processing. Compared with star-join costs (Tables 2
and 21), the performance gain was very high in GRSSB, varying
from 80.41 to 91.74%. Compared with the SB-index without
the proposed modification (Tables 8 and 21), the performance
gain was also high in GRSSB, ranging from 15.69 to 73.71%.

Finally, Figures 10 and 11, respectively, indicate how the
SB-index performed in GRSSB and GHSSB, by comparing it
to the best results of C1 and C2 (i.e., configurations described
in Section 5). The axes indicate the time reduction provided
by the SB-index. In Figure 10, except for the Address granu-
larity level, the results indicate enhancement of the SB-index’s
second level.

Instead of eliminating the redundancy in GDW schemas,
we propose a means of reducing its effects. This strategy
enhances the SB-index portability, since it allows the SB-index
to be used in distinct GDW schemas.

Table 20. Measurements on the enhancement of the SB-index applied
to GRSSB: index building.

Elapsed Time (s) Disk Accesses SB-index size

City 2,005 100 4.81 MB
Nation 11,428 100 3.93 MB
Region 19,446 100 3.86 MB

Table 21. Measurements on the enhancement of the SB-index applied
to GRSSB: query processing.

Elapsed
Time (s)

Disk
Accesses

Time
Reduction
Star-join

Time
Reduction
SB-index

City 229.11 511 91.74% 15.69%
Nation 507.41 57 85.29% 56.93%
Region 1214.93 36 80.41% 73.71%

33The Impact of Spatial Data Redundancy on SOLAP Query Performance2009; 15(2)

10. Conclusions
This paper analyzed the effects of the spatial data redun-

dancy in SOLAP query performance over Geographic Data
Warehouses (GDW). In order to carry out this analysis, we
compared the query response times of spatial roll-up/drill-
down operations for two distinct GDW schemas. Since
redundancy is related to attribute hierarchies in dimension
tables, the first schema, GRSSB, was designed intrinsically
redundant, while the other, GHSSB, avoids redundancy
through a hybrid schema that store the spatial data in sepa-
rate tables. Our performance tests, using current database
management systems resources, showed that the GRSSB’s
spatial data redundancy introduced greater performance
losses than the GHSSB’s joins costs.

These results motivated us to investigate indexing alterna-
tives aimed at improving query performance in a redundant
GDW. We investigated SOLAP queries defined over the inter-
section, enclosure and containment spatial predicates and
applied to roll-up and drill-down operations. Comparisons
between the SB-index and the star-join aided by efficient spatial
indices (R-trees and GiST) showed that the SB-index greatly
improved query processing: in GRSSB, performance gains
ranged from 25.45 to 99.82%, while in GHSSB they varied from
90.38 to 97.13%. The results also indicated that the SB-index is

much more compact than the star-join Bitmap, requiring a very
small fraction of this index volume: at most 0.20%.

The lower improvement obtained in GRSSB motivated
us to propose a specific enhancement of the SB-index to
deal with spatial data redundancy, by evaluating distinct
MBR and spatial objects only once instead of multiple times.
This enhancement resulted in performance gains of 80.41 to
91.74% in GRSSB when compared to star-join. Clearly, spatial
data redundancy is correlated with performance losses. Based
on the performance results gathered in our experiments, we
state that, if possible, the spatial data redundancy should be
avoided in the GDW design.

We also addressed the impact of the increase in data
volume on the performance of SOLAP query processing.
The increase did not impair the performance of the SB-index,
which highly improved the elapsed time in query processing
from 89.74 to 99.93% in GHSSB.

We are currently investigating other strategies to mini-
mize the effects of data redundancy on the SB-index, such
as adapting the SB-index to use the R*-tree CR to manipulate
distinct MBR1, 7. In order to complement our investigation
into the effects of data redundancy, we are planning to
run new experiments using different SOLAP queries and
different database management systems. The datasets and
workload used in our experiments are also being adapted to
create a new benchmark for GDW. We also plan to develop
algorithms to support update operations on the SB-index,
considering domains whose spatial objects need frequent
modifications on their geometries.

The current proposal of the SB-index query processing
has two phases: filter and refinement phases. An interme-
diate phase using a more accurate approximation could be
added in order to improve the performance of the SB-index.
This approximation should reduce even more the number of
spatial objects to be analyzed in the refinement phase and
is less expensive to evaluate than the exact geometry of the
spatial objects4. We intend to use the Convex Hull and 5C 3 as
the approximation for the intermediate phase.

Acknowledgments

This work has been supported by the following Brazilian
research agencies: FAPESP, CNPq, CAPES, INEP and FINEP.
The authors also thank the support of the Web-PIDE Project
in the context of the Observatory of the Education of the
Brazilian Government.

References

1. Beckmann N, Kriegel HP, Schneider R and Seeger B. The
R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data; 1990. p. 322-331.

2. Bimonte S, Tchounikine A and Miquel M. Spatial OLAP:
Open Issues and a Web Based Prototype. Proceedings of the
10th AGILE International Conference on Geographic Information
Science; 2007. 11 p.

7000

6000

5000

4000

3000

2000

1000

0

95% 91% 85%

80%

E
la

ps
ed

 T
im

e
(s

ec
on

d
s)

Address City Nation Region
Granularity

C1 C2 C3

Figure 10. How the SB-index performed better than C1 and C2 in
GRSSB.

C1 C2 C3

3500

3000

2500

2000

1500

1000

500

0
Address City Nation Nation

Granularity

95% 94% 92% 90%

E
la

ps
e

Ti
m

e
(s

ec
on

d
s)

Figure 11. How the SB-index performed better than C1 and C2 in
GHSSB.

Journal of the Brazilian Computer Society34 Siqueira TLL, Ciferri CDA, Times VC, Oliveira AG, Ciferri RR

3. Brinkhoff T, Kriegel HP, Schneider R. Comparison of
Approximations of Complex Objects Used for Approximation-
based Query Processing in Spatial Database Systems.
Proceedings of 9th International Conference on Data Engineering;
1993. p. 40-49.

4. Brinkhoff T, Kriegel HP, Schneider R and Seeger B. Multi-
step Processing of Spatial. Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data;
1994. p. 197-208.

5. U.S. Census Bureau. TIGER: Topologically Integrated
Geographic Encoding and Referencing system. Available
from: <http://www.census.gov/geo/www/tiger>. Acess
in: March 2009.

6. Fidalgo RN, Times VC, Silva J and Souza FF. GeoDWFrame:
A Framework for Guiding the Design of Geographical
Dimensional Schemas. Proceedings of the 6th International
Conference on Data Warehousing and Knowledge Discovery;
2004. p. 26-37.

7. Gaede V and Günther O. Multidimensional Access Methods.
ACM Computing Surveys 1998; 30(2):170-231.

8. The GiST Indexing Project. Available from: http://gist.
cs.berkeley.edu. Acess in: March 2009.

9. Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D,
Venkatrao M et al. Data cube: A Relational Aggregation
Operator Generalizing Group-by, Cross-tab, and Sub-totals.
Data Mining and Knowledge Discovery 1997;1(1):29–53.

10. Guttman A. R-Trees: A Dynamic Index Structure for Spatial
Searching. ACM SIGMOD Record 1984;14(2):47-57.

11. Harinarayan V, Rajaraman A and Ullman JD. Implementing
Data Cubes Efficiently. ACM SIGMOD Record
1996;25(2):205-216.

12. Kimball R and Ross M. The Data Warehouse Toolkit. 2 ed.
Wiley; 2002.

13. Lo ML and Ravishankar CV. Spatial Hash-Joins. Proceedings
of the 1996 ACM SIGMOD International Conference on
Management of Data; 1996. p. 247-258.

14. Malinowski E and Zimányi E. Representing Spatiality in
a Conceptual Multidimensional Model. Proceedings of the
12th ACM International Workshop on Geographic Information
Systems; 2004. p. 12-22.

15. Malinowski E and Zimányi E. Spatial Hierarchies and
Topological Relationships in the Spatial MultiDimER Model.
Proceedings of the 22nd British National Conference on Databases;
2005. p.17-28.

16. Malinowski E and Zimányi E. Advanced Data Warehouse
Design: From Conventional to Spatial and Temporal Applications.
1 ed. Springer; 2008.

17. O’Neil P and Graefe G. Multi-Table Joins Through Bitmapped
Join Indices. ACM SIGMOD Record 1995;24(3):8-11.

18. O’Neil P, O’Neil E and Chen X. The Star Schema Benchmark.
Available from: http://www.cs.umb.edu/~poneil/
starschemab.pdf. Acess in: January 2007.

19. O’Neil EJ, O’Neil PE, Wu K. Bitmap Index Design Choices
and Their Performance Implications. Proceedings of the 11th
International Database Engineering and Applications Symposium;
2007. p. 72-84.

20. O’Neil P, Quass D. Improved Query Performance with
Variant Indexes. Proceedings of the International Conference on
Management of Data; 1997. p. 38-49.

21. Papadias D, Kalnis P, Zhang J, Tao Y. Efficient OLAP
Operations in Spatial Data Warehouses. Proceedings of the 7th
International Symposium on Advances in Spatial and Temporal
Databases; 2001. p. 443-459.

22. Poess M, Floyd C. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Record 2000;29(4):64-71.

23. Rao F, Zhang L, Yu X, Li Y and Chen Y. Spatial hierarchy and
OLAP-favored search in spatial data warehouse. Proceedings
of the 6th International Workshop on Data Warehousing and
OLAP; 2003. p. 48-55.

24. Rigaux P, Scholl M, Voisard A. Spatial Databases with
Application to GIS. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.; 2002.

25. Rivest S, Bedard Y, Proulx MJ, Hubert MNF and Pastor J.
SOLAP Technology: Merging Business Intelligence with
Geospatial Technology for Interactive Spatio-Temporal
Exploration and Analysis of Data. Journal of Photogrammetry
and Remote Sensing 2005; 26(1):17-33.

26. Sampaio MC, Souza AG and Baptista CS. Towards a Logical
Multidimensional Model for Spatial Data Warehousing and
OLAP. Proceedings of the 9th International Workshop on Data
Warehousing and OLAP; 2006. p. 83-90.

27. Silva J, Times VC, Salgado AC, Souza C, Fidalgo RN,
Oliveira AG. A Set of Aggregation Functions for Spatial
Measures. Proceedings of the 11th International Workshop on Data
Warehousing and OLAP; 2008. p. 25-32.

28. Siqueira TLL, Ciferri RR, Times VC and Ciferri CDA.
Investigating the Effects of Spatial Data Redundancy in
Query Performance over Geographical Data Warehouses.
Proceedings of the X Brazilian Symposium on GeoInformatics;
2008. p. 1-12.

29 Siqueira TLL, Ciferri RR, Times VC and Ciferri CDA. A Spatial
Bitmap-Based Index for Geographical Data Warehouses.
Proceedings of the 24th ACM Symposium on Applied Computing;
2009. p. 1336-1342.

30 Stefanovic N, Han J and Koperski K. Object-Based Selective
Materialization for Efficient Implementation of Spatial Data
Cubes. IEEE Transactions on Knowledge and Data Engineering
2000;12(6): 938-958.

31. Stockinger K and Wu K. Bitmap Indices for Data Warehouses.
In Data Warehouses and OLAP: Concepts, Architectures and
Solutions. IRM Press; 2007. p. 157-178.

32. Whitehorn M, Zare R, Pasumansky M. Fast Track to MDX.
Springer; 2005.

33. Wrembel R and Koncilia C. Data Warehouses and OLAP:
Concepts, Architectures and Solutions. IRM Press; 2006.

34. Wu MC and Buchmann AP. Research Issues in Data
Warehousing. In Proceedings of the German Database Conference;
1997. p. 61-82.

35. Wu K, Otoo EJ and Shoshani A. Optimizing Bitmap Indices
with Efficient Compression. ACM Transactions on Database
Systems 2006;31(1):1-38.

36. Wu K, Stockinger K and Shoshani A. Breaking the Curse
of Cardinality on Bitmap Indexes. Proceedings of the 20th
International Conference on Scientific and Statistical Database
Management; 2008. p. 348-365.

