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ABSTRACT
Transactional memory is a new trend in concurrency control
that was boosted by the advent of multi-core processors and
the near to come many-core processors. It promises the per-
formance of finer grain with the simplicity of coarse grain
threading. However, there is a clear absence of software de-
velopment tools oriented to the transactional memory pro-
gramming model, which is confirmed by the very small num-
ber of related scientific works published until now.

This paper describes ongoing work. We propose a very
low overhead monitoring framework, developed specifically
for monitoring TM computations, that collects the transac-
tional events into a single log file, sorted in a global order.
This framework is then used by a visualization tool to dis-
play different types of charts from two categories: statistical
charts and thread-time space diagrams. These last diagrams
are interactive, allowing to identify conflicting transactions.
We use the visualization tool to analyse the behavior of two
different, but similar, testing applications, illustrating how
it can be used to better understand the behavior of these
transactional memory applications.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming—Parallel Programming ; D.2.5 [SOFTWARE
ENGINEERING]: Testing and Debugging—Diagnostics

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Software Transactional Memory, Monitoring, Profiling, Vi-
sualization, Testing, Debugging, Concurrency

1. INTRODUCTION
The interest in parallel programming was boosted by the

recent emergence of multi-core processors. In the past, per-
formance improvement had a strong dependency on proces-
sor speed increase, but processor speed is not increasing any-
more. The recent evident drop of prices and general avail-
ability of multiprocessors in desktop computers made these
multi-core architectures available not only to the everyday
user, but also to the software developers, who must now rely
on parallelism to fully exploit computational systems and
achieve performance improvements. One can estimate that

soon desktop computers will include dozens of processors
and, thus, the programming mechanisms and methodolo-
gies must consider scalability as a key issue. Transactional
Memory (TM) promises to ease the development of scalable
parallel applications with performance close to finer grain
threading but with the simplicity of coarse grain threading.

Parallelism comes to application development at the ex-
pense of a dramatic increase in the program complexity and
in the development efforts. Coding is harder due to many
factors, such as tracking and coordinating the multiple con-
current control flows. Testing is also harder, as the paral-
lel application may exhibit a multitude of behaviors, many
of them unacceptable. Debugging is also much harder, as
the exponential number of possible application states makes
state-based debugging per se almost useless, and the intru-
sion effect introduced by monitoring (logging) approaches
may change the application behavior and potentially masks
errors previously observed and trigger new ones. Also, de-
velopers observe that parallel applications underperform for
the available hardware. This is frequently due to design
and/or coding decisions that limit the exploitation of con-
currency internally by the application.

The increased complexity of parallel program develop-
ment at all levels, including testing and correction and per-
formance debugging, may be eased up by a good under-
standing of the effective application behavior in its specific
hardware and software execution contexts, including under-
standing the transactional framework being used to model
and control interactions between the multiple control flows.
One way to achieve such an understanding is by collecting
run-time information about the application behavior and
later analyze this data. The collected run-time raw data
can easily achieve hundreds of megabytes and, thus, become
unmanageable by the common developer. A visual repre-
sentation of the collected run-time data may aggregate large
amounts of data in a single figure and, thus, may be very
convenient for the program behavior analysis.

In this paper we propose a framework for analyzing the
behavior of Transactional memory applications. This frame-
work is composed by four components: the low overhead
monitoring tool and trace file generator, the trace-file pro-
cessor, the trace-file analyzers, and the graphical user inter-
face. Each of these components will be further detailed in
this paper.

The main contributions of this paper are:

• The proposal of a low overhead monitoring system for
transactional memory programs that does not change



the global application behavior;

• A set of analyzers that extract relevant information
from the trace file;

• An interactive graphical user interface that displays
the information produced by the analyzers.

The remaining of this paper is organized as follows: the
next Section will introduce the low overhead monitoring
framework for transactional memory; Section 3 will describe
the experimental context where the monitoring framework
was used; Section 4 will describe our tool that displays a
set of charts reporting on the information collected by the
monitoring framework; Section 5 will show how the tool can
be used to help in analyzing the behavior of two testing ap-
plications; and Section 7 presents some concluding remarks
and line out some future work.

2. THE MONITORING FRAMEWORK
Monitoring transactional memory requires registering the

Start and ending of a transaction, either with Commit or
Abort, and all Read and Write accesses to shared memory
locations that took place within the transaction. Reading or
writing data from/to a memory location is usually accom-
plished with a single machine instruction. Logging these
memory access events will probably require dozens or even
hundreds of machine instructions, speeding down the mem-
ory accesses operations by one or two orders of magnitude.
This level of overhead may be unacceptable to the com-
putation. Disks are much slower than memory and saving
the logged events into a file is also unacceptable in most
situations. As an alternative, a limited number of events
may be kept in a shared memory buffer, but the need to
have exclusive access to the shared buffer for registering the
events makes it a bottleneck in the logging system, elimi-
nating much of the non-determinism inherent to the paral-
lel computation and significantly changing the application
behavior.

Three important properties must be considered when de-
veloping a transactional memory monitoring system: i) have
the logged events kept in main memory represented with a
small memory footprint; ii) do not introduce additional syn-
chronizations between threads; and iii) do keep the global
application behavior. The last property depends on its pre-
decessor, as additional synchronizations between threads will
most probably change the global program behavior.

To satisfy these three properties, we opted for an approach
where each thread keeps the logging information in a private
buffer in a compact binary format. All threads are thus
working independently from each other, allowing the con-
current registration of events with no contention between
threads. When the program finishes its execution, the trac-
ing system merges all buffers and dumps the events into a
single file, in text format for easier understanding. Merging
the local thread buffers depends on defining a global order
for the events. One possible solution would be to have an
atomic counter incremented by each thread each time an
event is registered. However, this approach would not com-
ply to the second and third properties, which states that
the logging system should not introduce additional synchro-
nization requirements neither change the global application
behavior. Our solution was to use a specific CPU register
(the RDTS register) that gives the number of clock cycles

since the last system reset. The value given by this register
can be used to impose a global order to the events and can be
accessed by all threads with no additional synchronization.

The value of the RDTSC register in each processor that
may drift from the others. This clock drifting causes the
global ordering of the events to be error prone and, thus,
the resulting single file is not 100% accurate. However, the
inaccuracy of this methodology does not compromise seri-
ously the results for the statistical information; and this
methodology provides very accurate information that could
not be obtained otherwise, such as the real transaction du-
ration time.

When using the tracing system, if all the operations being
traced incur in the same overhead, the global application be-
haviour will be essentially the same, including the inherent
non-determinism of the application. There will be a simple
reduction of the overall system performance without signif-
icant impacts in the system behavior.

Figure 1 illustrates the performance of the two testing
applications with and without the monitoring system acti-
vated. We studied the behavior in a read dominant con-
text (the red/dark gray line), and a write dominant context
(the green/light gray line). The left column always refers
to the Linked List application and the right column to the
Red-Black Tree application. For the top line, the testing
applications were ran with no monitoring system. For the
middle line, we used a (shared) atomic counter as a logi-
cal clock to timestamp the events and support their global
ordering. For the bottom line, we used the CPU registers
(RDTSC) to timestamp the events.
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Figure 1: The performance of testing applications
with and without the monitoring system.

By analysing the figure, one can conclude that the perfor-
mance results for the applications without monitoring (top
line) and with the atomic counter (middle line) are com-
pletely different, thus the applications exhibit different be-



haviors. On the other hand, comparing the graphs in the top
and bottom lines, one can depict that the monitoring system
in our approach reduces the overall performance to approx-
imately 40% of the original, but displays similar scalability
when the number of processors increase, keeping the global
behavior for both applications. In the top-left and bottom-
left charts, the performance curve for the read-dominant
context are slightly different. This is due to scalability limi-
tations of the testing application (List) when running with-
out monitoring. This limitations are not triggered when
monitoring is activated because the total number of opera-
tions per second is much lower (approximately 40%).

2.1 Event Types
There are many differences between the multiple transac-

tional memory frameworks described in the literature. How-
ever, all of them rely in a small set of operations to provide
its functionalities, namely: Start of a transaction (Tx Start),
end a transaction successfully with Commit (TxCommit) or
unsuccessfully with Abort TxAbort, and access a shared data
item for Reading (TxRead) or for Writing (TxWrite). Al-
though with multiple alternative implementations, the above
set of events is widely accepted as the minimum set neces-
sary to describe Transactional Memory computations.

The programmer will use these operations in the following
order: TxStart (TxRead | TxWrite)* [TxAbort] TxCommit,
where “*” denotes repetition and “[ ]” denotes optional.
However, considering that at runtime TxAbort and TxCom-
mit are mutually exclusive and that a transaction may abort
by many reasons; the actual behavior of the application can
be represented as: TxStart (TxRead | TxWrite)* (TxCommit

| TxAbortUser | TxAbortCommit | TxAbortOther), where
TxAbortUser denotes that the transaction was aborted by
programmer request, TxAbortCommit denotes that the trans-
action tried but was unable to commit, and TxAbortOther

denotes that the transaction aborted when accessing a shared
data item, either for reading or for writing.

Each event must be registered upon the execution of the
associated operation. In fact, we specify that all the events,
except the TxCommit, must be registered right before the
execution of the operation. The TxCommit event must be
registered only when the transactional framework knows
that it can commit the transaction. If a transaction will-
ing to commit is aborted by the transactional framework,
only a TxAbort event should be registered. This means that
all transactions are delimited in the trace log by a TxStart
event, and by either a TxCommit or a TxAbort event.

2.2 Event Structure
Each event is composed by a set of attributes. A subset of

these attributes are common to all types of events while oth-
ers are event specific. The following attributes are common
to all events:

• timestamp — The time instant in which the event oc-
curred;

• eventId — The identifier for the type of event, e.g.,
TxStart, TxRead, etc;

• threadId — The identifier of the thread that executed
the operation;

• transactionId — The identifier of the transaction
code block in which this operation took place.

All the attributes described above are self explanatory,
except the last one. A single tread can execute multiple
transactions in sequence, thus the transactionId attribute
is used to identify the transaction code block where the op-
eration took place. This allows to uniquely identify each
transaction code block and to locate it in the source code.
It also allows to map a set of operations into a single trans-
action.

The TxAbort event has an additional attribute, the type

attribute, that is used to identify the reason for aborting the
transaction. Because transactional memory frameworks im-
plement different validation schemes, transactions can abort
when preforming a read operation, a write operation, a com-
mit operation, or when the user explicitly aborts the transac-
tion. This attribute has three possible values: commit, when
the transaction aborts on commit; user, when the transac-
tion aborts by user request; other, when none of the previous
apply and, thus, the transaction aborted in the sequence of
a read or a write operation.

To keep the tracing system light, it should avoid post-
processing the events online if it can be done later offline.
There is no distinction between read and write aborts in the
tracing file because it is easy to post-process the trace and,
by looking back in time, to find which operation triggered
the abort. In this case, one just needs to look back for the
previous event from the same thread and check if it is either
a read or a write operation.

The TxRead and TxWrite operations also have an addi-
tional attribute: the varId attribute. This attribute is used
to identify the memory address or object ID (for an OO
programming language) that was accessed by the operation.
This identifier must be unique for each memory location or
object.

2.3 Tracing System Instrumentation
We implemented a simple API so that TM frameworks

could easily insert the tracing system call functions within
the existing code. The current prototype only implements
the API and the programmer must change the source code
accordingly, but we intend to implement an mechanism to
automatically insert the calls to the API. The API is com-
posed by five functions, one to register each of the pre-
viously described events, namely TxStart, TxCommit, Tx-
Abort, TxRead, and TxWrite.

All the calls to the monitoring API can requested by the
TM framework. The exception goes to the TxStart event.
This event must associate a unique ID to the transaction
source code block that will latter be used to refer to that
code block for, e.g., associate a transaction to a user-level
operation. If IDs were generated automatically, a table that
maps transactions IDs into source code blocks would have
to be generated and made accessible to the programmer. A
source-to-source compiler could easily generate the unique
transaction IDs and dump this table in the end of the source
code transformation process.

2.4 Tracing System Output
The tracing system dumps the content of all the buffers

into a single file upon the termination of the application.
All the events are ordered by increasing values of the time-
stamp attribute.

The format for each event in the trace file was defined
aiming at allowing our analyzing tool to work with traces



generated by different TM runtime systems. This format
definition is tus neutral to the TM and can be depicted in
Figure 2, along with a small example of the output of a trace
with two threads and two transactions.

3. EXPERIMENTAL CONTEXT
We performed a set of simple tests, logging the behav-

ior with our monitoring system and then used our tool to
analyze the behavior of these testing programs. The tests
consisted on series of operations on a set. The set has two
implementations, one as a Sorted Single Linked List and
another as a Red Black Tree. The interface for both im-
plementations provides three methods: insert(), remove()
and lookup(). The set elements have a key and a value and
all functions are indexed by the key. Duplicate keys are
not allowed and adding an element with an already exist-
ing key will update its value. The tests were executed over
CTL [3], a transactional memory framework for C and C++
programming languages derived from TL2 [4].

The tests are divided into three main categories, with
three different load patterns. The test load pattern is de-
fined by assigning different probabilities to each of the three
methods. The first load pattern is meant to simulate a read
dominant context, with 5% of inserts, 5% of removes and
90% of lookups. The second load pattern is meant to simu-
late a balanced system, with 20% of inserts, 20% of removes,
and 60% of lookups. The third load pattern is meant to sim-
ulate a write dominant context, with 45% of inserts, 45% of
removes, and 10% of lookups.

The tests were performed on a Sun Fire X4600 M2 x64
server with eight dual-core AMD Opteron Model 8220 pro-
cessors @ 2.8 GHz with 1024 KB cache and 16 GB of RAM.
The tests were executed to a maximum of 8 threads, to
avoid having the operating system tasks interfere with the
tests and introducing noise (arbitrary time delays) into the
tracing system.

4. THE VISUALIZATION TOOL
One of the problems of tracing systems is that they tend

to generate huge amounts of hard to digest information. In
our monitoring system, besides registering the start and end
of memory transactions, we must also register all the ac-
cesses to shared memory locations, and there may be mil-
lions of memory accesses per second. For the applications
under testing, the monitoring system was generating ap-
proximately 50 Kbytes of tracing data per processor per
millisecond, resulting in near 100 MByte of data for a time
slot of 200 milliseconds with eight parallel threads.

Such volumes of information are clearly unmanageable
with no aid from helping tools.

Our goal was to develop a tool to help processing the
huge amounts of information generated by the monitoring
system. The tool should serve two main purposes: i) pro-
vide a graphical representation for statistical information of
the testing application behavior; and ii) provide a graphical
representation of the application behavior along time.

The visualization tool we developed has thus two main
features: visualization of statistical information by means
of charts; and visualization of transactional computations
in a timeline. Both features consume the same source of
information which is the trace log generated by the tracing
system (see Figure 2).

4.1 Application Components
The application is composed by four components: the

monitoring framework, which was already described; the
trace-file processor; the trace-file analyzers; and the graphi-
cal user interface.

4.1.1 The Graphical User Interface
The application graphical user interface (GUI) is in a very

preliminary phase. The current set of analyzing modules will
also be expanded in the near future. The application GUI
is composed by two panes: one pane, on the left, allows to
choose the type of visualization; the other pane, on the right,
will display the selected chart/graph. Figure 3 illustrates the
main view of the visualization tool.

Figure 3: Main layout of the visualization tool

4.1.2 The Trace-File Processing
To ease the work of the analyzers when parsing the trace-

file for generating charts or transaction behavior graphs, we
developed a small component that allows to see the trace
file as a list of events. Due to its size, we cannot load all
the trace file data into main memory, thus this component
provides the analyzers with an event iterator that operates
over the events in the trace-file stored directly in secondary
memory.

This iterator also supports the notion of savepoint. Save-
points work as bookmarks in the trace file and can be used
to jump directly back and forth in the trace file without
further processing.

4.1.3 The Trace-File Analyzers
There are two types of analyzers in our tool: visualiza-

tion of statistical information by means of charts; and visu-
alization of transactional computations in a timeline. The
first one uses JFreeChart, a library to render many different
types of charts (see Figure 5 as as example). The second one
uses a new Java Swing component developed from scratch,
to render the transactions behavior along time (see Figure 4
as an example).

Each analyzer must extend a well defined interface and
must implement a method that returns the respective visual
component. This component is rendered later on by the
application GUI component. This approach allows analyzers
to be considered as plugins to the GUI. All analyzers use



<timestamp> <eventId> T<threadId> <transactionId> [<TxAbort:type> | <varId>]

%% Example:

3043566053937770 tx_start T1 2

3043566053938505 tx_read T1 2 0x3871dbf8

3043566053938530 tx_start T2 0

3043566053938569 tx_read T1 2 0x805fa0

3043566053939240 tx_read T2 0 0x805fa0

3043566053939378 tx_write T2 0 0x805fa0

3043566053939505 tx_read T1 2 0x3871dbf8

3043566053939725 tx_commit T2 0

3043566053940104 tx_abort T1 2 commit

Figure 2: Event string format and output example.

the trace-file processor to extract the information needed to
create the visual information.

The time-based transaction behavior analyzer is backed
up by a Java Swing component that can show the executed
transactions of each thread along time. Each transaction is
represented by a color depending on the type of transaction
and by the type of abort, and the size of the box repre-
senting the transaction is directly proportional to the real
time duration of the transaction. This analyzer also allows
the user to click in the abort event of a transaction A, and
will automatically draw an arrow from that event to another
transaction B that forced A to abort.

4.2 Visualization Modules
The visualization tool provides a graphical representations

for statistical information of the application behavior as well
as a graphical representation of transactional status of each
application thread along time. These two main classes of
charts will be further discussed in the following sections.

4.2.1 Statistical Information Charts
At the time of writing this paper, the visualization tool

supports eight different charts for displaying statistical in-
formation:

Abort Types. Displays a pie chart with the relative (per-
centage) number of transactions aborted at different
moments in the transaction life-cycle: by user request;
when reading a memory cell/object; when writing a
memory cell/object; and just prior to committing the
transaction. Allows to have a feeling on the eagerness
of conflict detection.

Commit/Abort. Displays the percentage of transactions
that finished successfully versus those that had to abort.
Allows to have a feeling on the amount of wasted com-
putation cycles.

Transaction ID. Displays the relative number of each kind
of user-level transactional operations. In our testing
application, this will be the percentage of insert(), re-
move() and lookup() operations. Contributes to the
understanding of the global application behavior.

Read/Write Rates. For each user-level transactional op-
eration, displays a bar with the percentage of memory
read and write operations. Contributes to the under-
standing of the behavior of the individual operations
executed by the application.

Commits/Aborts XYChart. Reports on the number of
committed and aborted transactions per execution time
slice. Allows to infer the transactional throughput
along time.

AccessMemChart. Reports on the access frequency for
each transactional unit, e.g., how many times each
memory cell was accessed. Allows to identify con-
tention points. In the future we plan to split this chart
into two charts, depending on the type of memory op-
eration executed, i.e., a memory read or write.

Transaction Retry Rates. For each user-level transactional
operation, reports average numbers for transaction re-
tries. Allows to understand the level of contention ex-
hibited by each user-level transactional operation.

Abort Reason. Reports on whether the aborts were caused
by real conflicts or by false positives, i.e., the transac-
tion was unnecessarily aborted by the transactional
memory framework. Allows to understand if the con-
tention management policies are adequate for the ap-
plication under testing.

Wasted Work. Reports the percentage of time spent by
aborted transactions in relation to the total time spent
by all transactions. This contributes to the under-
standing of the time wasted in processing doomed trans-
actions.

4.2.2 Time-based Behavior Information Charts
The visualization tool also supports the representation of

the application behavior along time. This chart will repre-
sent in the Y-axis the multiple application threads, and in
the X-axis the transactional status of those threads.

The example illustrated in Figure 4 refers to the evolution
of the testing application with eight threads, with Tx0 (dark
blue) meaning the thread is executing an insert operation,
Tx1 (light blue) meaning the thread is executing a remove
operation, and Tx2 (yellow) meaning the thread is executing
a lookup operation. Transactions terminate with either a
commit (green) or abort (pink). In the bottom left there
is a slider to change the zooming factor of the displayed
information.

In opposition to the statistical visualization charts/modules,
this time-based behavior information chart is interactive. If
the user selects a time-slot in a transaction A corresponding
to an abort, the module will locate and identify the trans-
action B that conflicted with transaction A and forced it to



abort. An arrow will be drawn connecting the abort time-
slot of transaction A to the beginning of the time-slot of
transaction B. This functionality can be depicted in Fig-
ure 4. The tool can also draw arrows from all abort events
to the corresponding conflicting transactions. Behavioral
patterns may be observed using this feature.

Figure 4: Example of a transaction conflict detection

In the future we plan to extend the user-interaction based
functionalities, such as mapping the transaction time-slots
to source-code locations and allowing the user to implicitly
invoke the text editor in the source line associated with a
specific time-slot.

4.2.3 Analyzer/Visualization Module Development
Developing a new analyzer is extremely easy in this tool.

As described previously each type of analyzer corresponds
to a Java class that extends an interface which defines the
type of analyzer. This class implements the generation of
the visual information, that can be a chart or a transaction
behavior graph, by collecting information while iterating the
trace-file. After implementing the analyzer class, it must be
registered in the GUI component, in order to be listed in
the left pane. These are the only two steps needed to create
a new analyzer module.

In future work we will dynamically load the analyzers
classes from a specified directory and list them in the GUI
component without requiring an explicit registration. This
will give the possibility to developers to create new analyzers
even without having the tool source code.

5. APPLICATION BEHAVIOR ANALYSIS
In this section we will illustrate how the visualization

charts can help understanding the behavior of an application
that uses transactional memory. We recall that we actually
have two similar testing applications implementing random-
generated operations over a set. In each application the set
resorts to different data structures: one uses a single linked
list (LL), the other uses a red-black tree (RB). The syntax
used to describe the testing conditions for the charts is as
follows: (App, n-threads, %inserts, %removes, %lookups,
key range). App will be either LL for the linked-list or RB
for the red-black tree; n-threads should be between 1 and
8 and will identify how many threads were executing con-
currently; %inserts, %removes, %lookups will identify the

memory access pattern that can be read-dominant (5%, 5%,
90%), balanced (20%, 20%, 60%), or write-dominant (45%,
45%, 10%); key range will define the size of the set.

5.1 Statistical Information Analysis

5.1.1 Commit/Abort Ratio
Figure 5 illustrates the Commit/Abort rates for different

conditions of the Linked List testing application.
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Figure 5: Commit abort rates for different testing
application conditions.

As expected, with a single thread the abort rate is zero.
This rate increases to 12% with two threads in a moderate
update access pattern (40% of updates and 60% of lookups).
With eight threads there is higher memory contention in
accessing the list elements, and in the same balanced context
the abort ratio increases to 53%. The worst case we could
identify was with a very high rate of updates (90%) and
with a very long list (10.000 elements). In this case, there
is a very high probability that long transactions aiming at
changing an element with a high key value, has to abort
because it read a value that has been changed by a shorter
transaction.

In the last two cases there is a considerable amount of
wasted work done by aborted transactions. This means the
transactional implementation of the underlying data struc-
ture is not adequate for current usage/parameters of the
testing application.

5.1.2 False Positives
The TM framework used to generate the trace files was

operating with memory words as the transactional unit and
using a deferred update mechanism. Because each transac-
tion may access thousands of memory cells, CTL maps mem-
ory addresses into a limited size table using a hash function.
As multiple memory words may be mapped into the same
position in the table, there is the chance to have undetected
false conflicts. The size of this table has direct influence in
percentage of the false conflicts.
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Figure 6: Percentage of false positives for different
testing application conditions.

Figure 6 shows the amount of false positives detected in
different traces.

From the charts available, of which we present a subset
here, we may infer that in general the list based (LL) so-
lution has proportionally more false positives than the red-
black tree based solution (RB). We may also infer that the
number of false positives decrease when the contention level
increases.

5.1.3 Transaction Retry Rate
Transactions frequently conflict with other transactions.

The common approach to deal with conflicts is to abort one
of the conflicting transactions. The transactional framework
resorts to a contention manager to decide which of the con-
flicting transactions must abort. Depending on the con-
tention manager policies, some types of transactions will be
more prone to abort than others, e.g., the contention man-
ager may give preference to shorter/longer transactions, or
to younger/older transactions, or to read-only transactions,
or to transactions that accessed the smaller/higher number
of shared resources, etc.

Figure 7 illustrates the transaction retry rate for different
testing application conditions. Different contention man-
agers would originate different charts.

Finding an element in a list has an O(n) complexity, while
doing the same operation in a red-black tree has as O(log2n).
Thus, as expected, the transaction retry rate for the LL
solution is much higher than for the RB solution. This can
easily be depicted in the figure by comparing the top two
charts with the lower ones (please note that the vertical scale
differs in all the charts).

Another interesting effect, is that with a higher num-
ber of keys, the LL implementation has in average more
aborts/retries and the RB implementation has less. This is
due to the fact that the CTL contention manager does not
privilege the longer, and the linear search in the LL imple-
mentation forces many long transactions to abort, because
at commit time there is a good chance that a shorter trans-
action has updated an item that was previously read by the
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Figure 7: Transaction retry rate for different testing
application conditions.

longer transaction and, thus, the longer transaction must
abort.

The opposite applies to the RB implementation. The
search space is split by half at each step and the proba-
bility of having two transactions in conflict is much lower.
The contention level decreases when the set cardinality in-
creases, as the search space is being slit even more.

5.1.4 Application Level Operations
Our testing applications receive a set of command line

arguments (exactly the same, for both the LL and RB ap-
plications) that instantiate some of the configurable param-
eters, changing in this way the overall application behavior,
including the memory access pattern.

In the case of our testing applications, there are only three
high-level operations: insert(), remove() and lookup().
The Figure 8 indicates the relative frequency of those oper-
ations as registered in the trace file.
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Figure 8: Relative frequency of user level operations
in the application.

The chart in the right has a relative frequency exactly as
expected for a write dominant context, i.e., 45% of inserts,
45% of removes and 10% of lookups. The chart in the left in-
dicates 19% of inserts, 21% of removes and 61% of lookups,
which even sum up to 101% and differs lightly from the val-
ues given in the command line, namely, 20%, 20% and 60%
respectively. These small variations are due to the usage



of a pseudo-random number generator to select the opera-
tion to be executed and, on the other hand, to the rounding
algorithm used to convert the percentages into integers.

5.1.5 Abort Types
The contention manager may order a transaction to abort

when accessing a shared resource. If the transaction reaches
the commit phase, a new validation phase is triggered, and
the committing transaction read set is validated against
the write set of all remaining concurrent transactions. The
transaction write set must also be validated against the read
and write sets of all concurrent transactions. Thus, four
different situations may trigger the aborting of a transac-
tion (whether the transaction is really aborted depends on
the contention manager): reading a shared resource that
has been changed since the current transaction has started;
writing to a shared resource that has been changed since the
current transaction has started; at the final validation of the
read and write sets, just prior to committing the transac-
tion; and by explicitly request from the user/programmer.
Figure 9 represents visually this information.
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Figure 9: Relative frequency of abort types in the
application.

In the case of our testing applications, the transactions
are either read-only (lookup operations) or read-write. The
later are a special case of read-write transactions, as the
write operation is always done in the very final moments of
the transaction life time. The LL version has more commit-
time aborts than the RB version. This is due to the fact
that LL transactions are very long and many conflicts will
only be detected at commit time.

5.1.6 Read/Write Rates
Different application-level transactional operations exhibit

different behavior in terms of memory access patterns. Some
are read-only, some others are mixed read-write, and some
others, as in the case of our testing applications, the write
operations, when they exist, are in a small number (and take
place in the very end of the transaction life-time). Figure 10
illustrates this ratio between read and write accesses to the
shared memory cells.

From the figure it is possible to infer that the lookup op-
eration (third column in both charts) does not update any
memory location. It can also be depicted that the RB tree
test does a lot more memory updates than the LL test. This
is due to the internal re-balancing of the RB tree. In the
case of the LL, the update operations (insert and remove)
iterate the list nodes until the right node is found, and just
then the node is updated and the transaction concluded.
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Figure 10: Relative frequency of memory accesses
(read/write) within a transaction.

Thus, the proportion of reads/writes is much higher than in
the case of the RB tree. Please note that both charts in the
figure refer to tests with a range of only 50 different keys,
which implies a list/tree with at most 50 different nodes.
With larger lists/trees, the ratio of reads/writes will only
increase.

6. RELATED WORK
As transactional memory is an emerging research area,

few work has been done concerning tools to support the
development of applications using transactional memory.

Yossi Lev in [7] presents a debugger which supports trans-
actional memory. The work introduced new debugging mech-
anisms, shadowing the inner work of the transactional mem-
ory framework from the user.

Ansari in [1] presents a tool to profile the execution of
applications that make use of transactional memory. The
profiling tool was applied to non-trivial benchmarks, such
as STAMP [2], to better understand what factors have more
impact in the overall performance. Some of the statistical
information provided by our tool has similar goals as those
of Ansari’s work.

Lourenço et al. in [8] presented some testing patterns that
proved to be useful at testing and debugging transactional
memory framework. Harmanci et al. in [6] developed a tool
to help in design and optimization of transactional memory
frameworks. The tool, TMUnit, provides a domain specific
language for specifying workloads, and tests the performance
and semantics of transactional memory frameworks.

The works reported in [1,7] and the works reported in [6,8]
have different goals. The former aim at aiding the develop-
ment of transactional memory applications, while the later
aims at the development of transactional memory frame-
works.

7. CONCLUDING REMARKS
Transactional memory is a new trend in concurrency con-

trol and there are not many tools available targeting soft-
ware development using transactional memory. Not even in
the research community. To our best knowledge up to the
moment, all the TM-oriented known tools are reported in
Section 6. In this paper we presented a novel tool aiming
at helping software developers to understand the behavior
of transactional memory applications.

Our tool resorts to a very low overhead monitoring frame-
work, developed specifically for monitoring TM computa-
tions, that collects the transactional events (start of a trans-
action, commit, abort, read and write shared resources) in



each thread and logs them, together with a time-stamp, into
a thread local memory buffer. When the application fin-
ishes, all the buffers are merged into a single one using a
time-stamp to impose the global ordering.

The tool will use the global log to display different types
of charts. Until now, all the charts may be grouped into one
of two main categories, statistical and state-time diagrams.
Statistical charts resort into analysis modules that process
the contents of the log file aiming at displaying a specific
kind of statistical information.

The global log may also be processed to extract time-
relative information, such as which application-level oper-
ations are being executed concurrently, or how long did it
take to execute a specific transaction. For our tool we de-
veloped and interactive module that exhibits a threads/time
chart, with thread IDs in the Y-axis and time in the X-axis.
The status of each thread changes visually along time. This
module is interactive and the user may select an abort event
in any thread and the tool will localize and point (with an ar-
row) the beginning of the conflicting transaction that forced
the initial one to abort.

The tool is being actively developed and many other charts,
both statistical and interactive, will may be developed. Other
statistics that could be interesting to collect would be, for
example, the effective amount of wasted work for each trans-
action type. Other interactive functionalities would include,
for example, cross-referencing between the transactional op-
erations in the log file and locations in the original source
code.

We also plan to generate logs from other non-trivial TM
benchmarking applications, such as STMBench7 [5], and the
STAMP [2] and SPLASH2 [9] collections, and interpret the
results using our visualization tool.
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